Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeshi Akinaga is active.

Publication


Featured researches published by Takeshi Akinaga.


Fluid Dynamics Research | 2003

Vortex shedding from a row of square bars

Jiro Mizushima; Takeshi Akinaga

Interactions of wakes in a flow past a row of square bars, which is placed across a uniform flow, are investigated by numerical simulations and experiments on the tassumption that the flow is two-dimensional and incompressible. At small Reynolds numbers the flow is steady and symmetric with respect not only to streamwise lines through the center of each square bar but also to streamwise centerlines between adjacent square bars. However, the steady symmetric flow becomes unstable at larger Reynolds numbers and make a transition to a steady asymmetric flow with respect to the centerlines between adjacent square bars in some cases or to an oscillatory flow in other cases. It is found that vortices are shed synchronously from adjacent square bars in the same phase or in anti-phase depending upon the distance between the bars when the flow is oscillatory. The origin of the transition to the steady asymmetric flow is identified as a pitchfork bifurcation, while the oscillatory flows with synchronous shedding of vortices are clarified to originate from a Hopf bifurcation. The critical Reynolds numbers of the transitions are evaluated numerically and the bifurcation diagram of the flow is obtained.


Journal of Fluid Mechanics | 2008

Flow across microvessel walls through the endothelial surface glycocalyx and the interendothelial cleft

Masako Sugihara-Seki; Takeshi Akinaga; Tomoaki Itano

A mathematical model is presented for steady fluid flow across microvessel walls through a serial pathway consisting of the endothelial surface glycocalyx and the intercellular cleft between adjacent endothelial cells, with junction strands and their discontinuous gaps. The three-dimensional flow through the pathway from the vessel lumen to the tissue space has been computed numerically based on a Brinkman equation with appropriate values of the Darcy permeability. The predicted values of the hydraulic conductivity Lp, defined as the ratio of the flow rate per unit surface area of the vessel wall to the pressure drop across it, are close to experimental measurements for rat mesentery microvessels. If the values of the Darcy permeability for the surface glycocalyx are determined based on the regular arrangements of fibres with 6nm radius and 8nm spacing proposed recently from the detailed structural measurements, then the present study suggests that the surface glycocalyx could be much less resistant to flow compared to previous estimates by the one-dimensional flow analyses, and the intercellular cleft could be a major determinant of the hydraulic conductivity of the microvessel wall.


Journal of the Physical Society of Japan | 2005

Linear Stability of Flow past Two Circular Cylinders in a Side-by-Side Arrangement

Takeshi Akinaga; Jiro Mizushima

The linear stability of flow past two circular cylinders in a side-by-side arrangement is investigated theoretically, numerically and experimentally under the assumption of a two-dimensional flow field, in order to explore the origin of in-phase and antiphase oscillatory flows. Steady symmetric flow is realized at a small Reynolds number, but becomes unstable above a critical Reynolds number though the solution corresponding to the flow still satisfies the basic equations irrespective of the magnitude of the Reynolds number. We obtained the solution numerically and investigated its linear stability. We found that there are two kinds of unstable modes, i.e., antisymmetric and symmetric modes, which lead to in-phase and antiphase oscillatory flows, respectively. We determined the critical Reynolds numbers for the two modes and evaluated the critical distance at which the most unstable disturbance changes from the antisymmetric to the symmetric mode, or vice versa.


Journal of the Physical Society of Japan | 2008

Electrical charge effect on osmotic flow through pores

Takeshi Akinaga; Masako Sugihara-Seki; Tomoaki Itano

An electrostatic model for osmotic flow through circular cylindrical pores is developed to describe the reflection coefficient for the membrane transport in the presence of surface charges on the pore wall and the solute. For a spherical solute placed at an arbitrary radial position in the pore, the electrical potential was computed by a spectral element method applied to the Poisson-Boltzmann equation together with the condition of electrical neutrality. The interaction energy between the surface charges was used to estimate the osmotic reflection coefficient. The proposed model predicts that even for a small Debye length compared to the pore radius, the repulsive electrostatic interaction between the surface charges could significantly increase the osmotic flow through the pore.


Journal of Fluid Mechanics | 2010

Effects of electric charge on osmotic flow across periodically arranged circular cylinders

Masako Sugihara-Seki; Takeshi Akinaga; Tomoaki Itano

An electrostatic model is developed for osmotic flow across a layer consisting of identical circular cylinders with a fixed surface charge, aligned parallel to each other so as to form an ordered hexagonal arrangement. The expression of the osmotic reflection coefficient is derived for spherical solutes with a fixed surface charge suspended in an electrolyte, based on low-Reynolds-number hydrodynamics and a continuum, point-charge description of the electric double layers. The repulsive electrostatic interaction between the surface charges with the same sign on the solute and the cylinders is shown to increase the exclusion region of solute from the cylinder surface, which enhances the osmotic flow. Applying the present model to the study of osmotic flow across the endothelial surface glycocalyx of capillary walls has revealed that this electrostatic model could account well for the reflection coefficients measured for charged macromolecules, such as albumin, in the physiological range of charge density and ion concentration.


Fluid Dynamics Research | 2011

Charge effects on hindrance factors for diffusion and convection of solute in pores I

Hideyuki O-Tani; Takeshi Akinaga; Masako Sugihara-Seki

The transport of a spherical solute through a long circular cylindrical pore filled with an electrolyte solution is studied numerically, in the presence of constant surface charge on the solute and the pore wall. Fluid dynamic analyses were carried out to calculate the flow field around the solute in the pore to evaluate the drag coefficients exerted on the solute. Electrical potentials around the solute in the electrolyte solution were computed based on a mean-field theory to provide the interaction energy between the charged solute and the pore wall. Combining the results of the fluid dynamic and electrostatic analyses, we estimated the rate of the diffusive and convective transport of the solute across the pore. Although the present estimates of the drag coefficients on the solute suggest more than 10% difference from existing studies, depending on the radius ratio of the solute relative to the pore and the radial position of the solute center in the pore, this difference leads to a minor effect on the hindrance factors. It was found that even at rather large ion concentrations, the repulsive electrostatic interaction between the charged solute and the pore wall of like charge could significantly reduce the transport rate of the solute.


Fluid Dynamics Research | 2012

The charge effect on the hindrance factors for diffusion and convection of a solute in pores: II

Takeshi Akinaga; Hideyuki O-Tani; Masako Sugihara-Seki

The diffusion and convection of a solute suspended in a fluid across porous membranes are known to be reduced compared to those in a bulk solution, owing to the fluid mechanical interaction between the solute and the pore wall as well as steric restriction. If the solute and the pore wall are electrically charged, the electrostatic interaction between them could affect the hindrance to diffusion and convection. In this study, the transport of charged spherical solutes through charged circular cylindrical pores filled with an electrolyte solution containing small ions was studied numerically by using a fluid mechanical and electrostatic model. Based on a mean field theory, the electrostatic interaction energy between the solute and the pore wall was estimated from the Poisson-Boltzmann equation, and the charge effect on the solute transport was examined for the solute and pore wall of like charge. The results were compared with those obtained from the linearized form of the Poisson-Boltzmann equation, i.e.the Debye-Huckel equation.


Biorheology | 2012

Charge effects on the hindered transport of macromolecules across the endothelial surface glycocalyx layer

Masako Sugihara-Seki; Takeshi Akinaga; Hideyuki O-Tani

A fluid mechanical and electrostatic model for the transport of solute molecules across the vascular endothelial surface glycocalyx layer (EGL) was developed to study the charge effect on the diffusive and convective transport of the solutes. The solute was assumed to be a spherical particle with a constant surface charge density, and the EGL was represented as an array of periodically arranged circular cylinders of like charge, with a constant surface charge density. By combining the fluid mechanical analyses for the flow around a solute suspended in an electrolyte solution and the electrostatic analyses for the free energy of the interaction between the solute and cylinders based on a mean field theory, we estimated the transport coefficients of the solute across the EGL. Both of diffusive and convective transports are reduced compared to those for an uncharged system, due to the stronger exclusion of the solute that results from the repulsive electrostatic interaction. The model prediction for the reflection coefficient for serum albumin agreed well with experimental observations if the charge density in the EGL is ranged from approximately -10 to -30 mEq/l.


Fluid Dynamics Research | 2011

Deflection of jets discharged into a reservoir with a free surface

Akihiro Wada; Keizo Ishikawa; Jiro Mizushima; Takeshi Akinaga

Deflections of jets discharged into a reservoir with a free surface are investigated numerically. The jets are known to deflect towards either side of the free surface or the bottom, whose direction is not determined uniquely in some experimental conditions, i.e. there are multiple stable states realizable in the same condition. The origin of the multiple stable states is explored by utilizing homotopy transformations in which the top boundary of the reservoir is transformed from a rigid to a free boundary and also the location of the outlet throat is continuously moved from mid-height to the top. We depicted bifurcation diagrams of the flow compiling the data of numerical simulations, from which we identified the origin as an imperfect pitchfork bifurcation, and obtained an insight into the mechanism for the direction to be determined. The parameter region where such multiple stable states are possible is also delimited.


Fluid Dynamics Research | 2012

Charge effect on hindrance factors for diffusion and convection of solute in pores II (Post-Print version)

Hideyuki O-Tani; Takeshi Akinaga; Masako Sugihara-Seki; 眞佐子 関

Collaboration


Dive into the Takeshi Akinaga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teruo Matsuzawa

Japan Advanced Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge