Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeshi Miyatsuka is active.

Publication


Featured researches published by Takeshi Miyatsuka.


Nature Medicine | 2004

Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide

Hideaki Kaneto; Yoshihisa Nakatani; Takeshi Miyatsuka; Dan Kawamori; Taka-aki Matsuoka; Munehide Matsuhisa; Yoshitaka Kajimoto; Hidenori Ichijo; Yoshimitsu Yamasaki; Masatsugu Hori

The JNK pathway is known to be activated in several tissues in the diabetic state, and is possibly involved in the development of insulin resistance and suppression of insulin biosynthesis. Here we show a potential new therapy for diabetes using cell-permeable JNK-inhibitory peptide. Intraperitoneal administration of the peptide led to its transduction into various tissues in vivo, and this treatment markedly improved insulin resistance and ameliorated glucose tolerance in diabetic mice. These data indicate that the JNK pathway is critically involved in diabetes and that the cell-permeable JNK-inhibitory peptide may have promise as a new therapeutic agent for diabetes.


Nature Medicine | 2010

Serotonin regulates pancreatic beta cell mass during pregnancy

Hail Kim; Yukiko Toyofuku; Francis C. Lynn; Eric Chak; Toyoyoshi Uchida; Hirok i Mizukami; Yoshio Fujitani; Ryuzo Kawamori; Takeshi Miyatsuka; Yasuhiro Kosaka; Katherine Yang; Gerard Honig; Marieke van der Hart; Nina Kishimoto; Juehu Wang; Soroku Yagihashi; Laurence H. Tecott; Hirotaka Watada; Michael S. German

During pregnancy, the energy requirements of the fetus impose changes in maternal metabolism. Increasing insulin resistance in the mother maintains nutrient flow to the growing fetus, whereas prolactin and placental lactogen counterbalance this resistance and prevent maternal hyperglycemia by driving expansion of the maternal population of insulin-producing beta cells. However, the exact mechanisms by which the lactogenic hormones drive beta cell expansion remain uncertain. Here we show that serotonin acts downstream of lactogen signaling to stimulate beta cell proliferation. Expression of serotonin synthetic enzyme tryptophan hydroxylase-1 (Tph1) and serotonin production rose sharply in beta cells during pregnancy or after treatment with lactogens in vitro. Inhibition of serotonin synthesis by dietary tryptophan restriction or Tph inhibition blocked beta cell expansion and induced glucose intolerance in pregnant mice without affecting insulin sensitivity. Expression of the Gαq-linked serotonin receptor 5-hydroxytryptamine receptor-2b (Htr2b) in maternal islets increased during pregnancy and normalized just before parturition, whereas expression of the Gαi-linked receptor Htr1d increased at the end of pregnancy and postpartum. Blocking Htr2b signaling in pregnant mice also blocked beta cell expansion and caused glucose intolerance. These studies reveal an integrated signaling pathway linking beta cell mass to anticipated insulin need during pregnancy. Modulators of this pathway, including medications and diet, may affect the risk of gestational diabetes.


Nature | 2010

Rfx6 directs islet formation and insulin production in mice and humans

Stuart Smith; Hui Qi Qu; Nadine Taleb; Nina Kishimoto; David W. Scheel; Yang Lu; Ann Marie Patch; Rosemary Grabs; Juehu Wang; Francis C. Lynn; Takeshi Miyatsuka; John Mitchell; Rina Seerke; Julie Désir; Serge Vanden Eijnden; Marc Abramowicz; Nadine Kacet; Jacques Weill; Marie Éve Renard; Mattia Gentile; Inger Hansen; Ken Dewar; Andrew T. Hattersley; Rennian Wang; Maria E. Wilson; Jeffrey D. Johnson; Constantin Polychronakos; Michael S. German

Insulin from the β-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor neurogenin 3 (Neurog3) initiates the differentiation of the β-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurog3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate β-cells for patients with diabetes.


Journal of Molecular Medicine | 2005

Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes

Hideaki Kaneto; Taka-aki Matsuoka; Yoshihisa Nakatani; Dan Kawamori; Takeshi Miyatsuka; Munehide Matsuhisa; Yoshimitsu Yamasaki

Pancreatic β-cell dysfunction and insulin resistance are observed in type 2 diabetes. Under diabetic conditions, oxidative stress and ER stress are induced in various tissues, leading to activation of the JNK pathway. This JNK activation suppresses insulin biosynthesis and interferes with insulin action. Indeed, suppression of the JNK pathway in diabetic mice improves insulin resistance and ameliorates glucose tolerance. Thus, the JNK pathway plays a central role in pathogenesis of type 2 diabetes and may be a potential target for diabetes therapy.


Journal of Biological Chemistry | 2005

A Crucial Role of MafA as a Novel Therapeutic Target for Diabetes

Hideaki Kaneto; Taka-aki Matsuoka; Yoshihisa Nakatani; Takeshi Miyatsuka; Munehide Matsuhisa; Masatsugu Hori; Yoshimitsu Yamasaki

MafA, a recently isolated pancreatic β-cell-specific transcription factor, is a potent activator of insulin gene transcription. In this study, we show that MafA overexpression, together with PDX-1 (pancreatic and duodenal homeobox factor-1) and NeuroD, markedly increases insulin gene expression in the liver. Consequently, substantial amounts of insulin protein were induced by such combination. Furthermore, in streptozotocin-induced diabetic mice, MafA overexpression in the liver, together with PDX-1 and NeuroD, dramatically ameliorated glucose tolerance, while combination of PDX-1 and NeuroD was much less effective. These results suggest a crucial role of MafA as a novel therapeutic target for diabetes.


Development | 2008

Signals from the neural crest regulate beta-cell mass in the pancreas

Nada Nekrep; Juehu Wang; Takeshi Miyatsuka; Michael S. German

Pancreatic islet cells and neurons share common functions and similar ontogenies, but originate in different germ layers. To determine whether ectoderm-derived cells contribute instructive signals to the developing endoderm-derived pancreas, we defined the chronology of migration and differentiation of neural crest cells in the pancreas, and tested their role in the development of the islets. The homeodomain transcription factor Phox2b marks the neural precursors from the neural crest that colonize the gut to form the enteric nervous system. In the embryonic mouse pancreas, we found Phox2b expressed briefly together with Sox10 along the epithelial-mesenchymal border at E12.5 in cells derived from the neural crest. Downregulation of Phox2b shortly thereafter was dependent upon Nkx2.2 expressed in the adjacent pancreatic epithelium. In Phox2b-/- embryos, neurons and glia did not develop in the pancreas, and Nkx2.2 expression was markedly upregulated in the epithelium. In addition, the number and replication rate of insulin-expressing beta-cells increased in the Phox2b-/- mice. We conclude that, during pancreatic development, Phox2b and Nkx2.2 form a non-cell-autonomous feedback loop that links the neural crest with the pancreatic epithelium, regulates the size of the beta-cell population, and thereby impacts insulin-secretory capacity and energy homeostasis.


Journal of Clinical Investigation | 2014

Human IAPP–induced pancreatic β cell toxicity and its regulation by autophagy

Nayumi Shigihara; Ayako Fukunaka; Akemi Hara; Koji Komiya; Akira Honda; Toyoyoshi Uchida; Hiroko Abe; Yukiko Toyofuku; Motoyuki Tamaki; Takeshi Ogihara; Takeshi Miyatsuka; Henry J. Hiddinga; Setsuya Sakagashira; Masato Koike; Yasuo Uchiyama; Tamotsu Yoshimori; Norman L. Eberhardt; Yoshio Fujitani; Hirotaka Watada

Pancreatic islets in patients with type 2 diabetes mellitus (T2DM) are characterized by loss of β cells and formation of amyloid deposits derived from islet amyloid polypeptide (IAPP). Here we demonstrated that treatment of INS-1 cells with human IAPP (hIAPP) enhances cell death, inhibits cytoproliferation, and increases autophagosome formation. Furthermore, inhibition of autophagy increased the vulnerability of β cells to the cytotoxic effects of hIAPP. Based on these in vitro findings, we examined the pathogenic role of hIAPP and its relation to autophagy in hIAPP-knockin mice. In animals fed a standard diet, hIAPP had no toxic effects on β cell function; however, hIAPP-knockin mice did not exhibit a high-fat-diet-induced compensatory increase in β cell mass, which was due to limited β cell proliferation and enhanced β cell apoptosis. Importantly, expression of hIAPP in mice with a β cell-specific autophagy defect resulted in substantial deterioration of glucose tolerance and dispersed cytoplasmic expression of p62-associated toxic oligomers, which were otherwise sequestrated within p62-positive inclusions. Together, our results indicate that increased insulin resistance in combination with reduced autophagy may enhance the toxic potential of hIAPP and enhance β cell dysfunction and progression of T2DM.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Neurogenin3 inhibits proliferation in endocrine progenitors by inducing Cdkn1a.

Takeshi Miyatsuka; Yasuhiro Kosaka; Hail Kim; Michael S. German

During organogenesis, the final size of mature cell populations depends on their rates of differentiation and expansion. Because transient expression of Neurogenin3 (Neurog3) in progenitor cells in the developing pancreas initiates their differentiation to mature islet cells, we examined the role of Neurog3 in cell cycle control during this process. We found that mitotically active pancreatic progenitor cells in mouse embryos exited the cell cycle after the initiation of Neurog3 expression. Transcriptome analysis demonstrated that the Neurog3-expressing cells dramatically up-regulated the mRNA encoding cyclin-dependent kinase inhibitor 1a (Cdkn1a). In Neurog3 null mice, the islet progenitor cells failed to activate Cdkn1a expression and continued to proliferate, showing that their exit from the cell cycle requires Neurog3. Furthermore, induced transgenic expression of Neurog3 in mouse β-cells in vivo markedly decreased their proliferation, increased Cdkn1a levels, and eventually caused profound hyperglycemia. In contrast, in Cdkn1a null mice, proliferation was incompletely suppressed in the Neurog3-expressing cells. These studies reveal a crucial role for Neurog3 in regulating the cell cycle during the differentiation of islet cells and demonstrate that the subsequent down-regulation of Neurog3 allows the mature islet cell population to expand.


Diabetes | 2010

Regulation of MafA Expression in Pancreatic β-cells in db/db Mice with Diabetes

Taka-aki Matsuoka; Hideaki Kaneto; Takeshi Miyatsuka; Tsunehiko Yamamoto; Kaoru Yamamoto; Ken Kato; Iichiro Shimomura; Roland Stein; Munehide Matsuhisa

OBJECTIVE Islet β-cells loose their ability to synthesize insulin under diabetic conditions, which is at least partially due to the decreased activity of insulin transcription factors such as MafA. Although an in vitro study showed that reactive oxygen species (ROS) decrease MafA expression, the underlying mechanism still remains unclear. In this study, we examined the effects of c-Jun, which is known to be upregulated by ROS, on the expression of MafA under diabetic conditions. RESEARCH DESIGN AND METHODS To examine the protein levels of MafA and c-Jun, we performed histological analysis and Western blotting using diabetic db/db mice. In addition, to evaluate the possible effects of c-Jun on MafA expression, we performed adenoviral overexpression of c-Jun in the MIN6 β-cell line and freshly isolated islets. RESULTS MafA expression was markedly decreased in the islets of db/db mice, while in contrast c-Jun expression was increased. Costaining of these factors in the islets of db/db mice clearly showed that MafA and insulin levels are decreased in c-Jun–positive cells. Consistent with these results, overexpression of c-Jun significantly decreased MafA expression, accompanied by suppression of insulin expression. Importantly, MafA overexpression restored the insulin promoter activity and protein levels that were suppressed by c-Jun. These results indicate that the decreased insulin biosynthesis induced by c-Jun is principally mediated by the suppression of MafA activity. CONCLUSIONS It is likely that the augmented expression of c-Jun in diabetic islets decreases MafA expression and thereby reduces insulin biosynthesis, which is often observed in type 2 diabetes.


Endocrine | 2012

Serum vitamin D levels are decreased and associated with thyroid volume in female patients with newly onset Graves' disease.

Tetsuyuki Yasuda; Yasuyuki Okamoto; Noboru Hamada; Kazuyuki Miyashita; Mitsuyoshi Takahara; Fumie Sakamoto; Takeshi Miyatsuka; Tetsuhiro Kitamura; Naoto Katakami; Dan Kawamori; Michio Otsuki; Taka-aki Matsuoka; Hideaki Kaneto; Iichiro Shimomura

It has been shown that vitamin D deficiency is associated with autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), multiple sclerosis (MS) and type 1 diabetes (T1DM), and that vitamin D supplementation prevents the onset and/or development of these autoimmune diseases [1]. Furthermore, it was reported more recently that patients with Hashimoto’s thyroiditis, an autoimmune thyroid disease had lower vitamin D levels [2]. However, there are few studies examining vitamin D status in patients with newly onset Graves’ disease. In the present study, we evaluated the vitamin D status in female patients with newly onset GD and the association of serum vitamin D levels with the clinical factors related to GD.

Collaboration


Dive into the Takeshi Miyatsuka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge