Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeshi Nagasu is active.

Publication


Featured researches published by Takeshi Nagasu.


Molecular & Cellular Proteomics | 2005

Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein

Yasushi Ishihama; Yoshiya Oda; Tsuyoshi Tabata; Toshitaka Sato; Takeshi Nagasu; Juri Rappsilber; Matthias Mann

To estimate absolute protein contents in complex mixtures, we previously defined a protein abundance index (PAI) as the number of observed peptides divided by the number of observable peptides per protein (Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome. Res. 12, 1231–1245). Here we report that PAI values obtained at different concentrations of serum albumin show a linear relationship with the logarithm of protein concentration in LC-MS/MS experiments. This was also the case for 46 proteins in a mouse whole cell lysate. For absolute quantitation, PAI was converted to exponentially modified PAI (emPAI), equal to 10PAI minus one, which is proportional to protein content in a protein mixture. For the 46 proteins in the whole lysate, the deviation percentages of the emPAI-based abundances from the actual values were within 63% on average, similar or better than determination of abundance by protein staining. emPAI was applied to comprehensive protein expression analysis and to a comparison study between gene and protein expression in a human cancer cell line, HCT116. The values of emPAI are easily calculated and add important quantitation information to proteomic experiments; therefore we suggest that they should be reported in large scale proteomic identification projects.


Nature Biotechnology | 2001

Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome

Yoshiya Oda; Takeshi Nagasu; Brian T. Chait

The current progression from genomics to proteomics is fueled by the realization that many properties of proteins (e.g., interactions, post-translational modifications) cannot be predicted from DNA sequence. Although it has become feasible to rapidly identify proteins from crude cell extracts using mass spectrometry after two-dimensional electrophoretic separation, it can be difficult to elucidate low-abundance proteins of interest in the presence of a large excess of relatively abundant proteins. Therefore, for effective proteome analysis it becomes critical to enrich the sample to be analyzed in subfractions of interest. For example, the analysis of protein kinase substrates can be greatly enhanced by enriching the sample of phosphorylated proteins. Although enrichment of phosphotyrosine-containing proteins has been achieved through the use of high-affinity anti-phosphotyrosine antibodies, the enrichment of phosphoserine/threonine-containing proteins has not been routinely possible. Here, we describe a method for enriching phosphoserine/threonine-containing proteins from crude cell extracts, and for subsequently identifying the phosphoproteins and sites of phosphorylation. The method, which involves chemical replacement of the phosphate moieties by affinity tags, should be of widespread utility for defining signaling pathways and control mechanisms that involve phosphorylation or dephosphorylation of serine/threonine residues.


The EMBO Journal | 1992

OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides.

K.-I. Nakayama; Takeshi Nagasu; Y.-I. Shimma; J.-R. Kuromitsu; Y. Jigami

The Saccharomyces cerevisiae och1 mutant shows a deficiency in the mannose outer chain elongation at the non‐permissive temperature. We have cloned the OCH1 gene by complementation of temperature sensitive (ts) phenotype for growth. The integrant of OCH1 gene in the yeast chromosome can complement the ts phenotype and shows the same mapping position as that of the och1 mutation, indicating that the cloned gene is the true gene for mutation. The OCH1 gene disruptant is not lethal but ts for cell growth, and lacks mannose outer chains. The OCH1 gene sequence predicts a 55 kDa protein consisting of 480 amino acids. It contains four potential asparagine‐linked (N‐linked) glycosylation sites and a single transmembrane region near the N‐terminus. In vitro translation/translocation analysis revealed that the large C‐terminal region of the OCH1 protein is located at the lumenal side of microsomal membranes with some sugar modification, indicating a type II membrane topology. The OCH1 protein was detected in yeast membrane fractions as four forms of 58–66 kDa, which correspond to the size of a glycoprotein containing four N‐linked sugar chains the length of which is almost the same or slightly larger than the inner core (Man8GlcNAc2) formed in the endoplasmic reticulum (ER). Finally, the OCH1 gene was found to encode a novel mannosyltransferase which specifically transfers [14C]mannose to the unique acceptor, the core‐like oligosaccharide of cell wall mannan accumulated in the och1 disruptant.


Nature Biotechnology | 2005

Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards

Yasushi Ishihama; Toshitaka Sato; Tsuyoshi Tabata; Norimasa Miyamoto; Koji Sagane; Takeshi Nagasu; Yoshiya Oda

An important challenge for proteomics is to be able to compare absolute protein levels across biological samples. Here we introduce an approach based on the use of culture-derived isotope tags (CDITs) for quantitative tissue proteome analysis. We cultured Neuro2A cells in a stable isotope-enriched medium and mixed them with mouse brain samples to serve as internal standards. Using CDITs, we identified and quantified a total of 1,000 proteins, 97–98% of which were expressed in both mouse whole brain and Neuro2A cells. CDITs also allow comprehensive and absolute protein quantification. Synthetic unlabeled peptides were used to quantify the corresponding proteins labeled with stable isotopes in Neuro2A cells, and the results were used to obtain the absolute amounts of 103 proteins in mouse whole brain. The expression levels correlated well with those in Neuro2A cells. Thus, the use of CDITs allows both relative and absolute quantitative proteome studies.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Functional disorders of the sympathetic nervous system in mice lacking the α1B subunit (Cav 2.2) of N-type calcium channels

Mitsuhiro Ino; Takashi Yoshinaga; Minoru Wakamori; Norimasa Miyamoto; Eiki Takahashi; Jiro Sonoda; Takaki Kagaya; Tohru Oki; Takeshi Nagasu; Yukio Nishizawa; Isao Tanaka; Keiji Imoto; Shinichi Aizawa; Sheryl E. Koch; Arnold M. Schwartz; Tetsuhiro Niidome; Kohei Sawada; Yasuo Mori

N-type voltage-dependent Ca2+ channels (VDCCs), predominantly localized in the nervous system, have been considered to play an essential role in a variety of neuronal functions, including neurotransmitter release at sympathetic nerve terminals. As a direct approach to elucidating the physiological significance of N-type VDCCs, we have generated mice genetically deficient in the α1B subunit (Cav 2.2). The α1B-deficient null mice, surprisingly, have a normal life span and are free from apparent behavioral defects. A complete and selective elimination of N-type currents, sensitive to ω-conotoxin GVIA, was observed without significant changes in the activity of other VDCC types in neuronal preparations of mutant mice. The baroreflex response, mediated by the sympathetic nervous system, was markedly reduced after bilateral carotid occlusion. In isolated left atria prepared from N-type-deficient mice, the positive inotropic responses to electrical sympathetic neuronal stimulation were dramatically decreased compared with those of normal mice. In contrast, parasympathetic nervous activity in the mutant mice was nearly identical to that of wild-type mice. Interestingly, the mutant mice showed sustained elevation of heart rate and blood pressure. These results provide direct evidence that N-type VDCCs are indispensable for the function of the sympathetic nervous system in circulatory regulation and indicate that N-type VDCC-deficient mice will be a useful model for studying disorders attributable to sympathetic nerve dysfunction.


BMC Neuroscience | 2005

Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice

Koji Sagane; Kazuhiro Hayakawa; Junko Kai; Tomoko Hirohashi; Eiki Takahashi; Norimasa Miyamoto; Mitsuhiro Ino; Tohru Oki; Kazuto Yamazaki; Takeshi Nagasu

BackgroundADAM22 is a member of the ADAM gene family, but the fact that it is expressed only in the nervous systems makes it unique. ADAM22s sequence similarity to other ADAMs suggests it to be an integrin binder and thus to have a role in cell-cell or cell-matrix interactions. To elucidate the physiological functions of ADAM22, we employed gene targeting to generate ADAM22 knockout mice.ResultsADAM22-deficient mice were produced in a good accordance with the Mendelian ratio and appeared normal at birth. After one week, severe ataxia was observed, and all homozygotes died before weaning, probably due to convulsions. No major histological abnormalities were detected in the cerebral cortex or cerebellum of the homozygous mutants; however, marked hypomyelination of the peripheral nerves was observed.ConclusionThe results of our study demonstrate that ADAM22 is closely involved in the correct functioning of the nervous system. Further analysis of ADAM22 will provide clues to understanding the mechanisms of human diseases such as epileptic seizures and peripheral neuropathy.


Expert Opinion on Therapeutic Patents | 2000

Novel sulphonamide derivatives for the treatment of cancer

Takashi Owa; Takeshi Nagasu

The sulphonamides constitute an important class of therapeutic agents in current medicinal science. After the discovery by Gerhard Domagk, of sulphamidochrysoidine (prontosil) as the first antibiotic sulpha-drug an active metabolite of the drug, sulphanilamide, was further derivatised in order to find compounds exhibiting superior antibacterial activity or different pharmacological effects. Diversification of the sulphanilamide structure led to the serial development of improved antibiotics, insulin-releasing hypoglycaemic drugs, carbonic anhydrase- (CA) inhibitory diuretics, anti-hypertensive drugs etc. It is of particular interest that various structurally novel sulphonamide derivatives have recently been reported to show substantial anti-tumour activity in vitro and/or in vivo. Although they have a common chemical motif of an aromatic/heterocyclic sulphonamide, there are a variety of mechanisms for their anti-tumour action, such as disruption of microtubule assembly, cell cycle arrest in the G1 phase, functional suppression of the transcriptional activator NF-Y, angiogenesis inhibition and carbonic anhydrase inhibition. Furthermore, some of these compounds selected via elaborate preclinical screenings are currently being evaluated in clinical trials. This review summarises recent patents and related papers which have disclosed novel classes of sulphonamide derivatives for the treatment of cancer.


Gene Expression Patterns | 2001

Reduced neuropeptide Y mRNA levels in the frontal cortex of people with schizophrenia and bipolar disorder.

Junro Kuromitsu; Akira Yokoi; Takatoshi Kawai; Takeshi Nagasu; Takako Aizawa; Seiichi Haga; Kazuhiko Ikeda

To study the change of gene expression in the brain tissues of schizophrenia, we used the gene expression monitoring technology and compared two sets of pools each containing four RNA samples of frontal cortex that were randomly selected from the control or schizophrenia group. We found that the expression of two genes were commonly altered in four pairwise comparisons; the expression of DEAD-box protein p72 (p72) gene was increased and neuropeptide Y (NPY) gene expression was decreased in the schizophrenia group compared with the control group. To substantiate these results, we estimated their mRNA levels by the real time TaqMan method in the 15 samples of each frontal or temporal cortex of four matched groups of schizophrenia, bipolar disorder, major depression and normal controls. A statistically significant decrease was observed for NPY in the frontal, but not in the temporal cortex, in the schizophrenia group (P=0.003). A decrease was also observed in the frontal cortex of the bipolar disorder group (P=0.031). In contrast, p72 gene expression showed no significant difference among the four groups. In conclusion, by novel technology of DNA array and TaqMan PCR analyses, we found that neuropeptide Y mRNA levels were significantly reduced in the frontal cortex in both schizophrenia and bipolar disorder.


Journal of Receptors and Signal Transduction | 2006

Chronic Intracerebroventricular Administration of Relaxin-3 Increases Body Weight in Rats

Takayuki Hida; Eiki Takahashi; Kodo Shikata; Tomoko Hirohashi; Toru Sawai; Takashi Seiki; Hirokazu Tanaka; Takatoshi Kawai; Osamu Ito; Toru Arai; Akira Yokoi; Tetsuya Hirakawa; Hiroo Ogura; Takeshi Nagasu; Norimasa Miyamoto; Junro Kuromitsu

Bolus-administered intracerebroventricular (ICV) relaxin-3 has been reported to increase feeding. In this study, to examine the role of relaxin-3 signaling in energy homeostasis, we studied the effects of chronically administered ICV relaxin-3 on body weight gain and locomotor activity in rats. Two groups of animals received vehicle or relaxin-3 at 600 pmol/head/day, delivered with Alzet osmotic minipumps. In animals receiving relaxin-3, food consumption and weight gain were statistically significantly higher than those in the vehicle group during the 14-day infusion. During the light phase on days 2 and 7 and the dark phase on days 3 and 8, there was no difference in locomotor activity between the two groups. Plasma concentrations of leptin and insulin in rats chronically injected with relaxin-3 were significantly higher than in the vehicle-injected controls. These results indicate that relaxin-3 up-regulates food intake, leading to an increase of body weight and that relaxin-3 antagonists might be candidate antiobesity agents.


Genes to Cells | 2002

Identification of activity‐regulated proteins in the postsynaptic density fraction

Keiko Satoh; Masakazu Takeuchi; Yoshiya Oda; Maki Deguchi-Tawarada; Yoshimasa Sakamoto; Kaho Matsubara; Takeshi Nagasu; Yoshimi Takai

Background: The postsynaptic density (PSD) at synapses is a specialized submembranous structure where neurotransmitter receptors are linked to cytoskeleton and signalling molecules. Activity‐dependent dynamic change in the components of the PSD is a mechanism of synaptic plasticity. Identification of the PSD proteins and examination of their modulations dependent on synaptic activity will be valuable for an understanding of the molecular basis of learning and memory.

Collaboration


Dive into the Takeshi Nagasu's collaboration.

Researchain Logo
Decentralizing Knowledge