Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeshi Nara is active.

Publication


Featured researches published by Takeshi Nara.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structure of the trypanosome cyanide-insensitive alternative oxidase

Tomoo Shiba; Yasutoshi Kido; Kimitoshi Sakamoto; Daniel Ken Inaoka; Chiaki Tsuge; Ryoko Tatsumi; Gen Takahashi; Emmanuel O. Balogun; Takeshi Nara; Takashi Aoki; Teruki Honma; Akiko Tanaka; Masayuki Inoue; Shigeru Matsuoka; Hiroyuki Saimoto; Anthony L. Moore; Shigeharu Harada; Kiyoshi Kita

In addition to haem copper oxidases, all higher plants, some algae, yeasts, molds, metazoans, and pathogenic microorganisms such as Trypanosoma brucei contain an additional terminal oxidase, the cyanide-insensitive alternative oxidase (AOX). AOX is a diiron carboxylate protein that catalyzes the four-electron reduction of dioxygen to water by ubiquinol. In T. brucei, a parasite that causes human African sleeping sickness, AOX plays a critical role in the survival of the parasite in its bloodstream form. Because AOX is absent from mammals, this protein represents a unique and promising therapeutic target. Despite its bioenergetic and medical importance, however, structural features of any AOX are yet to be elucidated. Here we report crystal structures of the trypanosomal alternative oxidase in the absence and presence of ascofuranone derivatives. All structures reveal that the oxidase is a homodimer with the nonhaem diiron carboxylate active site buried within a four-helix bundle. Unusually, the active site is ligated solely by four glutamate residues in its oxidized inhibitor-free state; however, inhibitor binding induces the ligation of a histidine residue. A highly conserved Tyr220 is within 4 Å of the active site and is critical for catalytic activity. All structures also reveal that there are two hydrophobic cavities per monomer. Both inhibitors bind to one cavity within 4 Å and 5 Å of the active site and Tyr220, respectively. A second cavity interacts with the inhibitor-binding cavity at the diiron center. We suggest that both cavities bind ubiquinol and along with Tyr220 are required for the catalytic cycle for O2 reduction.


Journal of Molecular Evolution | 2005

The Origin of Dihydroorotate Dehydrogenase Genes of Kinetoplastids, with Special Reference to Their Biological Significance and Adaptation to Anaerobic, Parasitic Conditions

Takeshi Annoura; Takeshi Nara; Takashi Makiuchi; Tetsuo Hashimoto; Takashi Aoki

Trypanosoma cruzi dihydroorotate dehydrogenase (DHOD), the fourth enzyme of the de novo pyrimidine biosynthetic pathway, is localized in the cytosol and utilizes fumarate as electron acceptor (fumarate reductase activity), while the enzyme from other various eukaryotes is mitochondrial membrane-linked. Here we report that DHOD-knockout T. cruzi did not express the enzyme protein and could not survive even in the presence of pyrimidine nucleosides, substrates for the potentially active salvage pathway, suggesting a vital role of fumarate reductase activity in the regulation of cellular redox balance. Cloning and phylogenetic analysis of euglenozoan DHOD genes showed that the euglenoid Euglena gracilis had a mitochondrial DHOD and that biflagellated bodonids, a sister group of trypanosomatids within kinetoplastids, harbor the cytosolic DHOD. Further, Bodo saliens, a bodonid, had an ACT/DHOD gene fusion encoding aspartate carbamoyltransferase (ACT), the second enzyme of the de novo pyrimidine pathway, and DHOD. This is the first report of this novel gene structure. These results are consistent with suggestions that an ancient common ancestor of Euglenozoa had a mitochondrial DHOD whose descendant exists in E. gracilis and that a common ancestor of kinetoplastids (bodonids and trypanosomatids) subsequently acquired a cytosolic DHOD by horizontal gene transfer. The cytosolic DHOD gene thus acquired may have contributed to adaptation to anaerobiosis in the kinetoplastid lineage and further contributed to the subsequent establishment of parasitism in a trypanosomatid ancestor. Different molecular strategies for anaerobic adaptation in pyrimidine biosynthesis, used by kinetoplastids and by euglenoids, are discussed. Evolutionary implications of the ACT/DHOD gene fusion are also discussed.


PLOS ONE | 2014

Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor.

Akiko Murakami; Fumiyuki Takahashi; Fariz Nurwidya; Isao Kobayashi; Kunihiko Minakata; Muneaki Hashimoto; Takeshi Nara; Motoyasu Kato; Ken Tajima; Naoko Shimada; Shin-ichiro Iwakami; Mariko Moriyama; Hiroyuki Moriyama; Fumiaki Koizumi; Kazuhisa Takahashi

Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia and CSCs in the resistance to gefitinib in non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation. NSCLC cell lines, PC9 and HCC827, which express the EGFR exon 19 deletion mutations, were exposed to high concentration of gefitinib under normoxic or hypoxic conditions. Seven days after gefitinib exposure, a small fraction of viable cells were detected, and these were referred to as “gefitinib-resistant persisters” (GRPs). CD133, Oct4, Sox2, Nanog, CXCR4, and ALDH1A1–all genes involved in stemness–were highly expressed in GRPs in PC9 and HCC827 cells, and PC9 GRPs exhibited a high potential for tumorigenicity in vivo. The expression of insulin-like growth factor 1 (IGF1) was also upregulated and IGF1 receptor (IGF1R) was activated on GRPs. Importantly, hypoxic exposure significantly increased sphere formation, reflecting the self-renewal capability, and the population of CD133- and Oct4-positive GRPs. Additionally, hypoxia upregulated IGF1 expression through hypoxia-inducible factor 1α (HIF1α), and markedly promoted the activation of IGF1R on GRPs. Knockdown of IGF1 expression significantly reduced phosphorylated IGF1R-expressing GRPs under hypoxic conditions. Finally, inhibition of HIF1α or IGF1R by specific inhibitors significantly decreased the population of CD133- and Oct4-positive GRPs, which were increased by hypoxia in PC9 and HCC827 cells. Collectively, these findings suggest that hypoxia increased the population of lung CSCs resistant to gefitinib in EGFR mutation-positive NSCLC by activating IGF1R. Targeting the IGF1R pathway may be a promising strategy for overcoming gefitinib resistance in EGFR mutation-positive NSCLC induced by lung CSCs and microenvironment factors such as tumor hypoxia.


Vaccine | 2000

Vaccination of domestic pig with recombinant paramyosin against Schistosoma japonicum in China.

Honggen Chen; Takeshi Nara; Xiao-Jun Zeng; Masao Satoh; Guochang Wu; Wei-Sheng Jiang; Fangyu Yi; Somei Kojima; Shaoji Zhang; Kenji Hirayama

Paramyosin (PM), a myosin-like protein is a major antigen on Schistosoma japonicum (Sj). We reported that passive transfer of a monoclonal IgE SjE18varepsilon.1 which recognizes PM of Sj (SJPM), partially protected mice from challenge infection. In the present study, we developed an experimental model system of schistosomiasis japonica with domestic pigs in China and used it for the evaluation of vaccination with recombinant SJPM (rSJPM). Sixteen-week-old pigs were successfully infected by dermal penetration of 120 cercariae of a domestic strain of Sj (50-60% worm recovery 11 weeks after challenge). The pigs vaccinated with 400 UV attenuated cercariae showed a reduction of worm recovery (53%, p<0.001). The experimental groups were immunized intradermally with rSJPM and alum or TiterMax and were partially protected against the challenge infection (32-35% reduction).


Biochimica et Biophysica Acta | 2000

Inhibition of Fas-mediated apoptosis by Trypanosoma cruzi infection.

Junko Nakajima-Shimada; Chunbin Zou; Masatoshi Takagi; Masato Umeda; Takeshi Nara; Takashi Aoki

Trypanosoma cruzi-infected and normal control mammalian cells were subjected to analysis of Fas-mediated apoptosis stimulated by an agonistic anti-Fas monoclonal antibody. The infected cells showed markedly hampered apoptotic changes in nuclear morphology, phosphatidylethanolamine translocation from the inside to the outside of the plasma membrane, and DNA fragmentation into multiples of 180 bp, relative to normal control cells. Upstream of these morphological and biochemical consequences, the caspase-3 activity was elevated by the Fas stimulation in a significantly greater proportion of intact control cells, but at a highly reduced rate of infected cells. The rapid elevation of caspase-8 activity in control, apoptotic cells was completely inhibited in infected cells. In an examination of the specificity of other stimulants, X-ray radiation or chemicals such as hydrogen peroxide, colchicine or etoposide did not cause significant differences in apoptotic rates between control and infected cells; tumor necrosis factor-alpha, however, induced a high rate of apoptosis in control cells, with an extremely lowered rate in infected cells. This study demonstrates, for the first time, that T. cruzi infection inhibits one of the earliest steps of death receptor-mediated apoptosis, an effect that most probably involves the inhibition of caspase-8. Differential apoptotic responses in cells infected with T. cruzi and other intracellular parasites are discussed.


Molecular Microbiology | 2013

Inositol 1,4,5‐trisphosphate receptor regulates replication, differentiation, infectivity and virulence of the parasitic protist Trypanosoma cruzi

Muneaki Hashimoto; Masahiro Enomoto; Jorge Morales; Nagomi Kurebayashi; Takashi Sakurai; Tetsuo Hashimoto; Takeshi Nara; Katsuhiko Mikoshiba

In animals, inositol 1,4,5‐trisphosphate receptors (IP3Rs) are ion channels that play a pivotal role in many biological processes by mediating Ca2+ release from the endoplasmic reticulum. Here, we report the identification and characterization of a novel IP3R in the parasitic protist, Trypanosoma cruzi, the pathogen responsible for Chagas disease. DT40 cells lacking endogenous IP3R genes expressing T. cruzi IP3R (TcIP3R) exhibited IP3‐mediated Ca2+ release from the ER, and demonstrated receptor binding to IP3. TcIP3R was expressed throughout the parasite life cycle but the expression level was much lower in bloodstream trypomastigotes than in intracellular amastigotes or epimastigotes. Disruption of two of the three TcIP3R gene loci led to the death of the parasite, suggesting that IP3R is essential for T. cruzi. Parasites expressing reduced or increased levels of TcIP3R displayed defects in growth, transformation and infectivity, indicating that TcIP3R is an important regulator of the parasites life cycle. Furthermore, mice infected with T. cruzi expressing reduced levels of TcIP3R exhibited a reduction of disease symptoms, indicating that TcIP3R is an important virulence factor. Combined with the fact that the primary structure of TcIP3R has low similarity to that of mammalian IP3Rs, TcIP3R is a promising drug target for Chagas disease.


Biochemistry | 2008

Structures of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with substrates and products: atomic resolution insights into mechanisms of dihydroorotate oxidation and fumarate reduction

Daniel Ken Inaoka; Kimitoshi Sakamoto; Hironari Shimizu; Tomoo Shiba; Genji Kurisu; Takeshi Nara; Takashi Aoki; Kiyoshi Kita; Shigeharu Harada

Dihydroorotate dehydrogenase (DHOD) from Trypanosoma cruzi (TcDHOD) is a member of family 1A DHOD that catalyzes the oxidation of dihydroorotate to orotate (first half-reaction) and then the reduction of fumarate to succinate (second half-reaction) in the de novo pyrimidine biosynthesis pathway. The oxidation of dihydroorotate is coupled with the reduction of FMN, and the reduced FMN converts fumarate to succinate in the second half-reaction. TcDHOD are known to be essential for survival and growth of T. cruzi and a validated drug target. The first-half reaction mechanism of the family 1A DHOD from Lactococcus lactis has been extensively investigated on the basis of kinetic isotope effects, mutagenesis and X-ray structures determined for ligand-free form and in complex with orotate, the product of the first half-reaction. In this report, we present crystal structures of TcDHOD in the ligand-free form and in complexes with an inhibitor, physiological substrates and products of the first and second half-reactions. These ligands bind to the same active site of TcDHOD, which is consistent with the one-site ping-pong Bi-Bi mechanism demonstrated by kinetic studies for family 1A DHODs. The binding of ligands to TcDHOD does not cause any significant structural changes to TcDHOD, and both reduced and oxidized FMN cofactors are in planar conformation, which indicates that the reduction of the FMN cofactor with dihydroorotate produces anionic reduced FMN. Therefore, they should be good models for the enzymatic reaction pathway of TcDHOD, although orotate and fumarate bind to TcDHOD with the oxidized FMN and dihydroorotate with the reduced FMN in the structures determined here. Cys130, which was identified as the active site base for family 1A DHOD (Fagan, R. L., Jensen, K. F., Bjornberg, O., and Palfey, B. A. (2007) Biochemistry 46, 4028-4036.), is well located for abstracting a proton from dihydroorotate C5 and transferring it to outside water molecules. The bound fumarate is in a twisted conformation, which induces partial charge separation represented as C 2 (delta-) and C 3 (delta+). Because of this partial charge separation, the thermodynamically favorable reduction of fumarate with reduced FMN seems to proceed in the way that C 2 (delta-) accepts a proton from Cys130 and C 3 (delta+) a hydride (or a hydride equivalent) from reduced FMN N 5 in TcDHOD.


Cancer Science | 2012

Hypoxia induces gefitinib resistance in non-small-cell lung cancer with both mutant and wild-type epidermal growth factor receptors

Kunihiko Minakata; Fumiyuki Takahashi; Takeshi Nara; Muneaki Hashimoto; Ken Tajima; Akiko Murakami; Fariz Nurwidya; Suzu Yae; Fumiaki Koizumi; Hiroyuki Moriyama; Kuniaki Seyama; Kazuto Nishio; Kazuhisa Takahashi

Somatic mutations in the epidermal growth factor receptor (EGFR) gene, such as exon 19 deletion mutations, are important factors in determining therapeutic responses to gefitinib in non‐small‐cell lung cancer (NSCLC). However, some patients have activating mutations in EGFR and show poor responses to gefitinib. In this study, we examined three NSCLC cell lines, HCC827, PC9, and HCC2935, that expressed an EGFR exon 19 deletion mutation. All cells expressed mutant EGFR, but the PC9 and HCC2935 cells also expressed wild‐type EGFR. The HCC827 cells were highly sensitive to gefitinib under both normoxia and hypoxia. However, the PC9 and HCC2935 cells were more resistant to gefitinib under hypoxic conditions compared to normoxia. Phosphorylation of EGFR and ERK was suppressed with gefitinib treatment to a lesser extent under hypoxia. The expression of transforming growth factor‐α (TGFα) was dramatically upregulated under hypoxia, and the knockdown of TGFα or hypoxia‐inducible factor‐1α (HIF1α) reversed the resistance to gefitinib in hypoxic PC9 and HCC2935 cells. Finally, introduction of the wild‐type EGFR gene into the HCC827 cells caused resistance to gefitinib under hypoxia. This phenomenon was also reversed by the knockdown of TGFα or HIF1α. Our results indicate that hypoxia causes gefitinib resistance in EGFR‐mutant NSCLC through the activation of wild‐type EGFR mediated by the upregulation of TGFα. The presence of wild‐type and mutant EGFR along with tumor hypoxia are important factors that should be considered when treating NSCLC patients with gefitinib.


Oncogene | 2010

Osteopontin-mediated enhanced hyaluronan binding induces multidrug resistance in mesothelioma cells

Ken Tajima; Rina Ohashi; Yoshitaka Sekido; Toyoaki Hida; Takeshi Nara; Muneaki Hashimoto; Shin-ichiro Iwakami; Kunihiko Minakata; Toshifumi Yae; Fumiyuki Takahashi; Hideyuki Saya; Kazuhisa Takahashi

Malignant pleural mesothelioma (MPM) is resistant to chemotherapy and thus shows a dismal prognosis. Osteopontin (OPN), a secreted noncollagenous and phosphoprotein, is suggested to be involved in the pathogenesis of MPM. However, the precise role of OPN, especially in the multidrug resistance of MPM, remains to be elucidated. We therefore established stable transfectants (ACC-MESO-1/OPN), which constitutively express OPN, to determine its role in the chemoresistance observed in MPM. The introduction of the OPN gene provides MPM cells with upregulated multidrug resistance through the mechanism of enhanced hyaluronate (HA) binding. The expression of CD44 variant isoforms, which inhibit HA binding, significantly decreased in ACC–MESO–1/OPN cells in comparison to control transfectants. Interestingly, the inhibition of the HA-CD44 interaction abrogated multidrug resistance in the ACC–MESO–1/OPN, thus suggesting the involvement of the surviving signal emanating from the HA-CD44 interaction. An enhanced level of the p-Akt in ACC–MESO–1/OPN cells was observed, and was diminished by CD44 siRNA. Inhibition of the Akt phosphorylation increased in number of the cells underwent apoptosis induced by NVB, VP-16 and GEM. Collectively, these results indicate that OPN is strongly involved in multidrug resistance by enhancing the CD44 binding to HA.


Parasites & Vectors | 2012

Toxoplasma gondii infection: Relationship between seroprevalence and risk factors among primary schoolchildren in the capital areas of Democratic Republic of São Tomé and Príncipe, West Africa

Chia Kwung Fan; Lin-Wen Lee; Chien Wei Liao; Ying-Chieh Huang; Yueh Lun Lee; Yu-Tai Chang; Ângela dos Santos Ramos José da Costa; Vilfrido Gil; Li-Hsing Chi; Takeshi Nara; Akiko Tsubouchi; Olaoluwa Pheabian Akinwale

BackgroundThe status of Toxoplasma gondii infection among primary schoolchildren (PSC) of the Democratic Republic of São Tomé and Príncipe (DRSTP), West Africa, remains unknown to date.MethodsA serologic survey and risk factors associated T. gondii infection among PSC in the DRSTP was assessed by the latex agglutination (LA) test and a questionnaire interview including parents’ occupation, various uncomfortable symptoms, histories of eating raw or undercooked food, drinking unboiled water, and raising pets, was conducted in October 2010. Schoolchildren from 4 primary schools located in the capital areas were selected, in total 255 serum samples were obtained by venipuncture, of which 123 serum samples were obtained from boys (9.8 ± 1.4 yrs) and 132 serum samples were obtained from girls (9.7 ± 1.3 yrs).ResultsThe overall seroprevalence of T. gondii infection was 63.1% (161/255). No significant gender difference in seroprevalence was found between boys (62.6%, 77/123) and girls (63.6%, 84/132) (p = 0.9). The older age group of 10 years had insignificantly higher seroprevalence (69.9%, 58/83) than that of the younger age group of 8 year olds (67.7%, 21/31) (p = 0.8). It was noteworthy that the majority of seropositive PSC (75.8%, 122/161) had high LA titers of ≥1: 1024, indirectly indicating acute or repeated Toxoplasma infection. Parents whose jobs were non-skilled workers (73.1%) showed significantly higher seroprevalence than that of semiskilled- (53.9%) or skilled workers (48.8%) (p < 0.05). Children who had a history of raising cats also showed significantly higher seroprevalence than those who did not (p < 0.001).Children who claimed to have had recent ocular manifestation or headache, i.e. within 1 month, seemed to have insignificantly higher seroprevalence than those who did not (p > 0.05).ConclusionsParents’ educational level and cats kept indoors seemed to be the high risk factors for PSC in acquisition of T. gondii infection. While, ocular manifestation and/or headache of PSC should be checked for the possibility of being T. gondii elicited. Measures such as improving environmental hygiene and intensive educational intervention to both PSC and their parents should be performed immediately so as to reduce T. gondii infection of DRSTP inhabitants including PSC and adults.

Collaboration


Dive into the Takeshi Nara's collaboration.

Top Co-Authors

Avatar

Takashi Aoki

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigeharu Harada

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeshi Annoura

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge