Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeshi Ogihara is active.

Publication


Featured researches published by Takeshi Ogihara.


Journal of Clinical Investigation | 2013

The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance.

Motoyuki Tamaki; Yoshio Fujitani; Akemi Hara; Toyoyoshi Uchida; Yoshifumi Tamura; Kageumi Takeno; Minako Kawaguchi; Takahiro Watanabe; Takeshi Ogihara; Ayako Fukunaka; Tomoaki Shimizu; Tomoya Mita; Akio Kanazawa; Mica Ohara Imaizumi; Takaya Abe; Hiroshi Kiyonari; Shintaro Hojyo; Toshiyuki Fukada; Takeshi Kawauchi; Shinya Nagamatsu; Toshio Hirano; Ryuzo Kawamori; Hirotaka Watada

Recent genome-wide association studies demonstrated that common variants of solute carrier family 30 member 8 gene (SLC30A8) increase susceptibility to type 2 diabetes. SLC30A8 encodes zinc transporter-8 (ZnT8), which delivers zinc ion from the cytoplasm into insulin granules. Although it is well known that insulin granules contain high amounts of zinc, the physiological role of secreted zinc remains elusive. In this study, we generated mice with β cell-specific Slc30a8 deficiency (ZnT8KO mice) and demonstrated an unexpected functional linkage between Slc30a8 deletion and hepatic insulin clearance. The ZnT8KO mice had low peripheral blood insulin levels, despite insulin hypersecretion from pancreatic β cells. We also demonstrated that a substantial amount of the hypersecreted insulin was degraded during its first passage through the liver. Consistent with these findings, ZnT8KO mice and human individuals carrying rs13266634, a major risk allele of SLC30A8, exhibited increased insulin clearance, as assessed by c-peptide/insulin ratio. Furthermore, we demonstrated that zinc secreted in concert with insulin suppressed hepatic insulin clearance by inhibiting clathrin-dependent insulin endocytosis. Our results indicate that SLC30A8 regulates hepatic insulin clearance and that genetic dysregulation of this system may play a role in the pathogenesis of type 2 diabetes.


Diabetes | 2009

Methyltransferase Set7/9 Maintains Transcription and Euchromatin Structure at Islet-Enriched Genes

Tye G. Deering; Takeshi Ogihara; Anthony P. Trace; Bernhard Maier; Raghavendra G. Mirmira

OBJECTIVE—The activation of β-cell genes, particularly of those encoding preproinsulin, requires an appropriate euchromatin (or “open”) DNA template characterized by hypermethylation of Lys4 of histone H3. We hypothesized that this modification is maintained in islet β-cells by the action of the histone methyltransferase Set7/9. RESEARCH DESIGN AND METHODS—To identify the role of Set7/9, we characterized its expression pattern and gene regulation and studied its function using RNA interference in both cell lines and primary mouse islets. RESULTS—Within the pancreas, Set7/9 protein shows striking specificity for islet cells, including α- and β-cells, as well as occasional cells within ducts. Consistent with these findings, the Set7/9 gene promoter contained an islet-specific enhancer located between −5,768 and −6,030 base pairs (relative to the transcriptional start site) that exhibited Pdx1-responsive activation in β-cells. To study Set7/9 function, we depleted insulinoma cells and primary mouse islets of Set7/9 protein using siRNA. Following siRNA treatment, we observed striking repression of genes involved in glucose-stimulated insulin secretion, including Ins1/2, Glut2, and MafA. These changes in transcription were accompanied by loss of dimethylated H3 Lys4 and RNA polymerase II recruitment, particularly at the Ins1/2 and Glut2 genes. Consistent with these data, depletion of Set7/9 in islets led to defects in glucose-stimulated Ca2+ mobilization and insulin secretion. CONCLUSIONS—We conclude that Set7/9 is required for normal β-cell function, likely through the maintenance of euchromatin structure at genes necessary for glucose-stimulated insulin secretion.


Journal of Clinical Investigation | 2010

The unique hypusine modification of eIF5A promotes islet β cell inflammation and dysfunction in mice

Bernhard Maier; Takeshi Ogihara; Anthony P. Trace; Sarah A. Tersey; Reiesha D. Robbins; Swarup K. Chakrabarti; Craig S. Nunemaker; Natalie D. Stull; Catherine A. Taylor; John E. Thompson; Richard Dondero; Eli C. Lewis; Charles A. Dinarello; Jerry L. Nadler; Raghavendra G. Mirmira

In both type 1 and type 2 diabetes, pancreatic islet dysfunction results in part from cytokine-mediated inflammation. The ubiquitous eukaryotic translation initiation factor 5A (eIF5A), which is the only protein to contain the amino acid hypusine, contributes to the production of proinflammatory cytokines. We therefore investigated whether eIF5A participates in the inflammatory cascade leading to islet dysfunction during the development of diabetes. As described herein, we found that eIF5A regulates iNOS levels and that eIF5A depletion as well as the inhibition of hypusination protects against glucose intolerance in inflammatory mouse models of diabetes. We observed that following knockdown of eIF5A expression, mice were resistant to beta cell loss and the development of hyperglycemia in the low-dose streptozotocin model of diabetes. The depletion of eIF5A led to impaired translation of iNOS-encoding mRNA within the islet. A role for the hypusine residue of eIF5A in islet inflammatory responses was suggested by the observation that inhibition of hypusine synthesis reduced translation of iNOS-encoding mRNA in rodent beta cells and human islets and protected mice against the development of glucose intolerance the low-dose streptozotocin model of diabetes. Further analysis revealed that hypusine is required in part for nuclear export of iNOS-encoding mRNA, a process that involved the export protein exportin1. These observations identify the hypusine modification of eIF5A as a potential therapeutic target for preserving islet function under inflammatory conditions.


Journal of Human Genetics | 2003

The polymorphism of manganese superoxide dismutase is associated with diabetic nephropathy in Japanese type 2 diabetic patients

Takashi Nomiyama; Yasushi Tanaka; Lianshan Piao; Keiko Nagasaka; Ken Sakai; Takeshi Ogihara; Kunihiro Nakajima; Hirotaka Watada; Ryuzo Kawamori

AbstractWe evaluated the relationship of an alanine or valine polymorphism at amino acid sequence 16 [Val(16)Ala] of manganese superoxide dismutase (Mn-SOD) with diabetes and diabetic nephropathy in Japanese type 2 diabetic patients. Val(16)Ala genotyping of Mn-SOD was done by polymerase chain reaction-restriction fragment length polymorphism with a restriction enzyme (Bsaw I) in 478 Japanese type 2 diabetic patients and 261 nondiabetic Japanese healthy subjects. The genotype distribution of diabetic and nondiabetic subjects was then compared, and the association of genotype with diabetic nephropathy was evaluated in the diabetic patients. The allele frequency and genotype of the diabetic patients were not different from those of the healthy nondiabetic subjects. The VV type showed a significantly higher frequency in the diabetic patients with nephropathy than did the AA or VA type [VV type: normoalbuminuria 70.8%, microalbuminuria 84.8% (P = 0.0057), macroalbuminuria 84.1% (P = 0.0128)]. Furthermore, logistic regression analysis showed that this polymorphism is associated with diabetic nephropathy independently (odds ratio = 0.461925, P = 0.03). Accordingly, the Val(16)Ala polymorphism of Mn-SOD may be unrelated to the etiology of type 2 diabetes, but it seems to be associated with diabetic nephropathy in Japanese type 2 diabetic patients.


Diabetes Care | 2014

Gut Dysbiosis and Detection of “Live Gut Bacteria” in Blood of Japanese Patients With Type 2 Diabetes

Junko Sato; Akio Kanazawa; Fuki Ikeda; Tomoaki Yoshihara; Hiromasa Goto; Hiroko Abe; Koji Komiya; Minako Kawaguchi; Tomoaki Shimizu; Takeshi Ogihara; Yoshifumi Tamura; Yuko Sakurai; Risako Yamamoto; Tomoya Mita; Yoshio Fujitani; Hiroshi Fukuda; Koji Nomoto; Takuya Takahashi; Takashi Asahara; Takahisa Hirose; Satoru Nagata; Yuichiro Yamashiro; Hirotaka Watada

OBJECTIVE Mounting evidence indicates that the gut microbiota are an important modifier of obesity and diabetes. However, so far there is no information on gut microbiota and “live gut bacteria” in the systemic circulation of Japanese patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Using a sensitive reverse transcription–quantitative PCR (RT-qPCR) method, we determined the composition of fecal gut microbiota in 50 Japanese patients with type 2 diabetes and 50 control subjects, and its association with various clinical parameters, including inflammatory markers. We also analyzed the presence of gut bacteria in blood samples. RESULTS The counts of the Clostridium coccoides group, Atopobium cluster, and Prevotella (obligate anaerobes) were significantly lower (P < 0.05), while the counts of total Lactobacillus (facultative anaerobes) were significantly higher (P < 0.05) in fecal samples of diabetic patients than in those of control subjects. Especially, the counts of Lactobacillus reuteri and Lactobacillus plantarum subgroups were significantly higher (P < 0.05). Gut bacteria were detected in blood at a significantly higher rate in diabetic patients than in control subjects (28% vs. 4%, P < 0.01), and most of these bacteria were Gram-positive. CONCLUSIONS This is the first report of gut dysbiosis in Japanese patients with type 2 diabetes as assessed by RT-qPCR. The high rate of gut bacteria in the circulation suggests translocation of bacteria from the gut to the bloodstream.


Diabetes | 2008

Impact of Oxidative Stress and Peroxisome Proliferator–Activated Receptor γ Coactivator-1α in Hepatic Insulin Resistance

Naoki Kumashiro; Yoshifumi Tamura; Toyoyoshi Uchida; Takeshi Ogihara; Yoshio Fujitani; Takahisa Hirose; Hideki Mochizuki; Ryuzo Kawamori; Hirotaka Watada

OBJECTIVE—Recent studies identified accumulation of reactive oxygen species (ROS) as a common pathway causing insulin resistance. However, whether and how the reduction of ROS levels improves insulin resistance remains to be elucidated. The present study was designed to define this mechanism. RESEARCH DESIGN AND METHODS—We investigated the effect of overexpression of superoxide dismutase (SOD)1 in liver of obese diabetic model (db/db) mice by adenoviral injection. RESULTS—db/db mice had high ROS levels in liver. Overexpression of SOD1 in liver of db/db mice reduced hepatic ROS and blood glucose level. These changes were accompanied by improvement in insulin resistance and reduction of hepatic gene expression of phosphoenol-pyruvate carboxykinase and peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), which is the main regulator of gluconeogenic genes. The inhibition of hepatic insulin resistance was accompanied by attenuation of phosphorylation of cAMP-responsive element-binding protein (CREB), which is a main regulator of PGC-1α expression, and attenuation of Jun NH2-terminal kinase (JNK) phosphorylation. Simultaneously, overexpression of SOD1 in db/db mice enhanced the inactivation of forkhead box class O1, another regulator of PGC-1α expression, without the changes of insulin-induced Akt phosphorylation in liver. In hepatocyte cell lines, ROS induced phosphorylation of JNK and CREB, and the latter, together with PGC-1α expression, was inhibited by a JNK inhibitor. CONCLUSIONS—Our results indicate that the reduction of ROS is a potential therapeutic target of liver insulin resistance, at least partly by the reduced expression of PGC-1α.


Journal of Clinical Investigation | 2014

Human IAPP–induced pancreatic β cell toxicity and its regulation by autophagy

Nayumi Shigihara; Ayako Fukunaka; Akemi Hara; Koji Komiya; Akira Honda; Toyoyoshi Uchida; Hiroko Abe; Yukiko Toyofuku; Motoyuki Tamaki; Takeshi Ogihara; Takeshi Miyatsuka; Henry J. Hiddinga; Setsuya Sakagashira; Masato Koike; Yasuo Uchiyama; Tamotsu Yoshimori; Norman L. Eberhardt; Yoshio Fujitani; Hirotaka Watada

Pancreatic islets in patients with type 2 diabetes mellitus (T2DM) are characterized by loss of β cells and formation of amyloid deposits derived from islet amyloid polypeptide (IAPP). Here we demonstrated that treatment of INS-1 cells with human IAPP (hIAPP) enhances cell death, inhibits cytoproliferation, and increases autophagosome formation. Furthermore, inhibition of autophagy increased the vulnerability of β cells to the cytotoxic effects of hIAPP. Based on these in vitro findings, we examined the pathogenic role of hIAPP and its relation to autophagy in hIAPP-knockin mice. In animals fed a standard diet, hIAPP had no toxic effects on β cell function; however, hIAPP-knockin mice did not exhibit a high-fat-diet-induced compensatory increase in β cell mass, which was due to limited β cell proliferation and enhanced β cell apoptosis. Importantly, expression of hIAPP in mice with a β cell-specific autophagy defect resulted in substantial deterioration of glucose tolerance and dispersed cytoplasmic expression of p62-associated toxic oligomers, which were otherwise sequestrated within p62-positive inclusions. Together, our results indicate that increased insulin resistance in combination with reduced autophagy may enhance the toxic potential of hIAPP and enhance β cell dysfunction and progression of T2DM.


Journal of Biological Chemistry | 2007

Protein Kinase Cδ Plays a Non-redundant Role in Insulin Secretion in Pancreatic β Cells

Toyoyoshi Uchida; Noseki Iwashita; Mica Ohara-Imaizumi; Takeshi Ogihara; Shintaro Nagai; Jong Bock Choi; Yoshifumi Tamura; Norihiro Tada; Ryuzo Kawamori; Keiichi I. Nakayama; Shinya Nagamatsu; Hirotaka Watada

Protein kinase C (PKC) is considered to modulate glucose-stimulated insulin secretion. Pancreatic β cells express multiple isoforms of PKCs; however, the role of each isoform in glucose-stimulated insulin secretion remains controversial. In this study we investigated the role of PKCδ, a major isoform expressed in pancreatic β cells on β cell function. Here, we showed that PKCδ null mice manifested glucose intolerance with impaired insulin secretion. Insulin tolerance test showed no decrease in insulin sensitivity in PKCδ null mice. Studies using islets isolated from these mice demonstrated decreased glucose- and KCl-stimulated insulin secretion. Perifusion studies indicated that mainly the second phase of insulin secretion was decreased. On the other hand, glucose-induced influx of Ca2+ into β cells was not altered. Immunohistochemistry using total internal reflection fluorescence microscopy and electron microscopic analysis showed an increased number of insulin granules close to the plasma membrane in β cells of PKCδ null mice. Although PKC is thought to phosphorylate Munc18-1 and facilitate soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors complex formation, the phosphorylation of Munc18-1 by glucose stimulation was decreased in islets of PKCδ null mice. We conclude that PKCδ plays a non-redundant role in glucose-stimulated insulin secretion. The impaired insulin secretion in PKCδ null mice is associated with reduced phosphorylation of Munc18-1.


Molecular Endocrinology | 2012

PPAR-γ activation restores pancreatic islet SERCA2 levels and prevents β-cell dysfunction under conditions of hyperglycemic and cytokine stress.

Tatsuyoshi Kono; Geonyoung Ahn; Dan R. Moss; Liann Gann; Angel Zarain-Herzberg; Yurika Nishiki; Patrick T. Fueger; Takeshi Ogihara; Carmella Evans-Molina

The maintenance of intracellular Ca(2+) homeostasis in the pancreatic β-cell is closely regulated by activity of the sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) pump. Our data demonstrate a loss of β-cell SERCA2b expression in several models of type 2 diabetes including islets from db/db mice and cadaveric diabetic human islets. Treatment of 832/13 rat INS-1-derived cells with 25 mm glucose and the proinflammatory cytokine IL-1β led to a similar loss of SERCA2b expression, which was prevented by treatment with the peroxisome proliferator-activated receptor (PPAR)-γ agonist, pioglitazone. Pioglitazone was able to also protect against hyperglycemia and cytokine-induced elevations in cytosolic Ca(2+) levels, insulin-secretory defects, and cell death. To determine whether PPAR-γ was a direct transcriptional regulator of the SERCA2 gene, luciferase assays were performed and showed that a -259 bp region is sufficient to confer PPAR-γ transactivation; EMSA and chromatin immunoprecipitation experiments confirmed that PPAR-γ directly binds a PPAR response element in this proximal region. We next sought to characterize the mechanisms by which SERCA2b was down-regulated. INS-1 cells were exposed to high glucose and IL-1β in time course experiments. Within 2 h of exposure, activation of cyclin-dependent kinase 5 (CDK5) was observed and correlated with increased serine-273 phosphorylation of PPAR-γ and loss of SERCA2 protein expression, findings that were prevented by pioglitazone and roscovitine, a pharmacological inhibitor of CDK5. We conclude that pioglitazone modulates SERCA2b expression through direct transcriptional regulation of the gene and indirectly through prevention of CDK5-induced phosphorylation of PPAR-γ.


Diabetologia | 2007

Impaired insulin secretion in vivo but enhanced insulin secretion from isolated islets in pancreatic beta cell-specific vascular endothelial growth factor-A knock-out mice

Noseki Iwashita; Toyoyoshi Uchida; Jong Bock Choi; K. Azuma; Takeshi Ogihara; N Ferrara; H. Gerber; Ryuzo Kawamori; Masahiro Inoue; Hirotaka Watada

Aims/hypothesisEndothelial cells are considered to be essential for normal pancreatic beta cell function. However, there have been no reports showing their importance for beta cell function.Materials and methodsUsing mice with disrupted vascular endothelial growth factor-A gene specifically in beta cells, we investigated the relation between islet vascular structure and beta cell function.ResultsMice with disrupted vascular endothelial growth factor-A gene specifically in beta cells had reduced islet vascular density with impaired formation of endothelial fenestration. While their fasting glucose and body weight were comparable with control mice, their glucose- and tolbutamide-induced rapid insulin release were impaired, thus resulting in glucose intolerance. On the other hand, glucose and KCl enhanced the levels of insulin secreted from islets isolated from these mice. In addition, the production of soluble N-ethylmaleimide-sensitive factor attachment protein receptors in the islets was increased. Insulin content and expression of insulin I and pancreas duodenum homeobox 1 mRNA in the islets were also increased.Conclusions/interpretationOur results indicate that an abnormal quality and quantity of blood vessels due to reduced expression of vascular endothelial growth factor-A in beta cells could be a cause of impaired insulin secretion without impairment of beta cell function.

Collaboration


Dive into the Takeshi Ogihara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge