Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeshi Sakuno is active.

Publication


Featured researches published by Takeshi Sakuno.


Nature | 2006

Shugoshin collaborates with protein phosphatase 2A to protect cohesin

Tomoya S. Kitajima; Takeshi Sakuno; Kei-ichiro Ishiguro; Shun-ichiro Iemura; Tohru Natsume; Shigehiro A. Kawashima; Yoshinori Watanabe

Sister chromatid cohesion, mediated by a complex called cohesin, is crucial—particularly at centromeres—for proper chromosome segregation in mitosis and meiosis. In animal mitotic cells, phosphorylation of cohesin promotes its dissociation from chromosomes, but centromeric cohesin is protected by shugoshin until kinetochores are properly captured by the spindle microtubules. However, the mechanism of shugoshin-dependent protection of cohesin is unknown. Here we find a specific subtype of serine/threonine protein phosphatase 2A (PP2A) associating with human shugoshin. PP2A colocalizes with shugoshin at centromeres and is required for centromeric protection. Purified shugoshin complex has an ability to reverse the phosphorylation of cohesin in vitro, suggesting that dephosphorylation of cohesin is the mechanism of protection at centromeres. Meiotic shugoshin of fission yeast also associates with PP2A, with both proteins collaboratively protecting Rec8-containing cohesin at centromeres. Thus, we have revealed a conserved mechanism of centromeric protection of eukaryotic chromosomes in mitosis and meiosis.


Nature | 2008

Heterochromatin links to centromeric protection by recruiting shugoshin

Yuya Yamagishi; Takeshi Sakuno; Mari Shimura; Yoshinori Watanabe

The centromere of a chromosome is composed mainly of two domains, a kinetochore assembling core centromere and peri-centromeric heterochromatin regions. The crucial role of centromeric heterochromatin is still unknown, because even in simpler unicellular organisms such as the fission yeast Schizosaccharomyces pombe, the heterochromatin protein Swi6 (HP1 homologue) has several functions at centromeres, including silencing gene expression and recombination, enriching cohesin, promoting kinetochore assembly, and, ultimately, preventing erroneous microtubule attachment to the kinetochores. Here we show that the requirement of heterochromatin for mitotic chromosome segregation is largely replaced by forcibly enriching cohesin at centromeres in fission yeast. However, this enrichment of cohesin is not sufficient to replace the meiotic requirement for heterochromatin. We find that the heterochromatin protein Swi6 associates directly with meiosis-specific shugoshin Sgo1, a protector of cohesin at centromeres. A point mutation of Sgo1 (V242E), which abolishes the interaction with Swi6, impairs the centromeric localization and function of Sgo1. The forced centromeric localization of Sgo1 restores proper meiotic chromosome segregation in swi6Δ cells. We also show that the direct link between HP1 and shugoshin is conserved in human cells. Taken together, our findings suggest that the recruitment of shugoshin is the important primary role for centromeric heterochromatin in ensuring eukaryotic chromosome segregation.


Nature | 2011

Condensin association with histone H2A shapes mitotic chromosomes

Kenji Tada; Hiroaki Susumu; Takeshi Sakuno; Yoshinori Watanabe

Chromosome structure is dynamically regulated during cell division, and this regulation is dependent, in part, on condensin. The localization of condensin at chromosome arms is crucial for chromosome partitioning during anaphase. Condensin is also enriched at kinetochores but its precise role and loading machinery remain unclear. Here we show that fission yeast (Schizosaccharomyces pombe) kinetochore proteins Pcs1 and Mde4—homologues of budding yeast (Saccharomyces cerevisiae) monopolin subunits and known to prevent merotelic kinetochore orientation—act as a condensin ‘recruiter’ at kinetochores, and that condensin itself may act to clamp microtubule binding sites during metaphase. In addition to the regional recruitment factors, overall condensin association with chromatin is governed by the chromosomal passenger kinase Aurora B. Aurora-B-dependent phosphorylation of condensin promotes its association with histone H2A and H2A.Z, which we identify as conserved chromatin ‘receptors’ of condensin. Condensin phosphorylation and its deposition onto chromosome arms reach a peak during anaphase, when Aurora B kinase relocates from centromeres to the spindle midzone, where the separating chromosome arms are positioned. Our results elucidate the molecular basis for the spatiotemporal regulation of mitotic chromosome architecture, which is crucial for chromosome partitioning.


Nature | 2009

Kinetochore geometry defined by cohesion within the centromere

Takeshi Sakuno; Kenji Tada; Yoshinori Watanabe

During cell division microtubules capture chromosomes by binding to the kinetochore assembled in the centromeric region of chromosomes. In mitosis sister chromatids are captured by microtubules emanating from both spindle poles, a process called bipolar attachment, whereas in meiosis I sisters are attached to microtubules originating from one spindle pole, called monopolar attachment. For determining chromosome orientation, kinetochore geometry or structure might be an important target of regulation. However, the molecular basis of this regulation has remained elusive. Here we show the link between kinetochore orientation and cohesion within the centromere in fission yeast Schizosaccharomyces pombe by strategies developed to visualize the concealed cohesion within the centromere, and to introduce artificial tethers that can influence kinetochore geometry. Our data imply that cohesion at the core centromere induces the mono-orientation of kinetochores whereas cohesion at the peri-centromeric region promotes bi-orientation. Our study may reveal a general mechanism for the geometric regulation of kinetochores, which collaborates with previously defined tension-dependent reorientation machinery.


The EMBO Journal | 2003

Interaction between Ski7p and Upf1p is required for nonsense‐mediated 3′‐to‐5′ mRNA decay in yeast

Shinya Takahashi; Yasuhiro Araki; Takeshi Sakuno; Toshiaki Katada

Aberrant mRNAs containing premature termination codons (PTC‐mRNAs) are degraded by a conserved surveillance system, referred to as the nonsense‐mediated decay (NMD) pathway. Although NMD is reported to operate on the decapping and 5′‐to‐3′ exonucleolytic decay of PTC‐mRNAs without affecting deadenylation, a role for an opposite 3′‐to‐5′ decay pathway remains largely unexplored. In this study, we have characterized the 3′‐to‐5′ directed mRNA degradation in the yeast NMD pathway. PTC‐mRNAs are stabilized in yeast cells lacking the components of 3′‐to‐5′ mRNA‐decay machinery. The 3′‐to‐5′ directed degradation of PTC‐mRNAs proceeds more rapidly than that of the PTC‐free transcript, in a manner dependent on the cytoplasmic exosome and Upf proteins. Moreover, Upf1p, but not Upf2p, interacts physically with an N‐terminal domain of Ski7p, although the interaction requires Upf2p. The efficiency of 3′‐to‐5′ directed degradation of PTC‐mRNAs is impaired by overexpression of Ski7p N‐domain fragments that contain a sequence of the Upf1p‐interaction region. These data suggest that the activation of 3′‐to‐5′ directed NMD is mediated through the interaction between Upf1p and the Ski7p N domain.


Chromosome Research | 2009

Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions

Takeshi Sakuno; Yoshinori Watanabe

During meiosis, a single round of genome duplication is followed by two sequential rounds of chromosome segregation. Through this process, a diploid parent cell generates gametes with a haploid set of chromosomes. A characteristic of meiotic chromosome segregation is a stepwise loss of sister chromatid cohesion along chromosomal arms and at centromeres. Whereas arm cohesion plays an important role in ensuring homologue disjunction at meiosis I, persisting cohesion at pericentromeric regions throughout meiosis I is essential for the faithful equational segregation of sisters in the following meiosis II, similar to mitosis. A widely conserved pericentromeric protein called shugoshin, which associates with protein phosphatase 2A (PP2A), plays a critical role in this protection of cohesin. Another key aspect of meiosis I is the establishment of monopolar attachment of sister kinetochores to spindle microtubules. Cohesion or physical linkage at the core centromeres, where kinetochores assemble, may conjoin sister kinetochores, leading to monopolar attachment. A meiosis-specific kinetochore factor such as fission yeast Moa1 or budding yeast monopolin contributes to this regulation. We propose that cohesion at the core centromere and pericentromeric regions plays distinct roles, especially in defining the orientation of kinetochores.


Nature | 2015

Meikin is a conserved regulator of meiosis-I-specific kinetochore function

Jihye Kim; Kei-ichiro Ishiguro; Aya Nambu; Bungo Akiyoshi; Shihori Yokobayashi; Ayano Kagami; Tadashi Ishiguro; Alberto M. Pendás; Naoki Takeda; Yogo Sakakibara; Tomoya S. Kitajima; Yuji Tanno; Takeshi Sakuno; Yoshinori Watanabe

The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.


Developmental Cell | 2011

Repositioning of Aurora B Promoted by Chiasmata Ensures Sister Chromatid Mono-Orientation in Meiosis I

Takeshi Sakuno; Koichi Tanaka; Silke Hauf; Yoshinori Watanabe

During meiosis I, kinetochores of sister chromatids are juxtaposed or fused and mono-orient, while homologous chromosomes that are paired by chiasmata (bivalents) have to biorient. In the absence of chiasmata, biorientation of sister chromatids (univalents), which carries a risk of aneuploidy, has been occasionally detected in several species, including humans. We show in fission yeast that biorientation of fused sister kinetochores predominates during early prometaphase I. Without chiasmata, this undesirable biorientation of univalents persists and eventually evades the spindle assembly checkpoint, provoking abnormal anaphase. When univalents are connected by chiasmata or by an artificial tether, this erroneous attachment is converted to monopolar attachment and stabilized. This stabilization is apparently achieved by a chromosome configuration that brings kinetochores to the outer edge of the bivalent, while bringing Aurora B, a destabilizer of kinetochore-microtubule attachment, inward. Our results elucidate how chiasmata favor biorientation of bivalents over that of univalents at meiosis I.


RNA | 2008

Upf1 potentially serves as a RING-related E3 ubiquitin ligase via its association with Upf3 in yeast.

Shinya Takahashi; Yasuhiro Araki; Yuriko Ohya; Takeshi Sakuno; Shin-ichi Hoshino; Kenji Kontani; Hiroshi Nishina; Toshiaki Katada

Three Upf proteins are essential to the nonsense-mediated mRNA decay (NMD) pathway. Although these proteins assemble on polysomes for recognition of aberrant mRNAs containing premature termination codons, the significance of this assembly remains to be elucidated. The Cys- and His-rich repeated N terminus (CH domain) of Upf1 has been implicated in its binding to Upf2. Here, we show that CH domain also plays a RING-related role for Upf1 to exhibit E3 ubiquitin ligase activity in yeast. Despite the sequence divergence from typical E3-RING fingers, the CH domain of yeast Upf1 specifically and directly interacted with the yeast E2 Ubc3. Interestingly, Upf1 served as a substrate for the in vitro self-ubiquitination, and the modification required its association with Upf3 rather than Upf2. Substitution of the coordinated Cys and His residues in the CH domain impaired not only self-ubiquitination of Upf1 but also rapid decay of aberrant mRNAs. These results suggest that Upf1 may serve as an E3 ubiquitin ligase upon its association with Upf3 and play an important role in signaling to the NMD pathway.


Fems Microbiology Reviews | 2014

Kinetochore composition and its function: lessons from yeasts

Yuya Yamagishi; Takeshi Sakuno; Yuhei Goto; Yoshinori Watanabe

Proper chromosome segregation during cell division is essential for proliferation, and this is facilitated by kinetochores, large protein complexes assembled on the centromeric region of the chromosomes. Although the sequences of centromeric DNA differ totally among organisms, many components of the kinetochores assembled on centromeres are very well conserved among eukaryotes. To define the identity of centromeres, centromere protein A (CENP-A), which is homologous to canonical histone H3, acts as a landmark for kinetochore assembly. Kinetochores mediate spindle–microtubule attachment and control the movement of chromosomes during mitosis and meiosis. To conduct faithful chromosome segregation, kinetochore assembly and microtubule attachment are elaborately regulated. Here we review the current understanding of the composition, assembly, functions and regulation of kinetochores revealed mainly through studies on fission and budding yeasts. Moreover, because recent cumulative evidence suggests the importance of the regulation of the orientation of kinetochore–microtubule attachment, which differs distinctly between mitosis and meiosis, we focus especially on the molecular mechanisms underlying this regulation.

Collaboration


Dive into the Takeshi Sakuno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge