Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeshi Yanai is active.

Publication


Featured researches published by Takeshi Yanai.


Journal of Chemical Physics | 2001

A long-range correction scheme for generalized-gradient-approximation exchange functionals

Hisayoshi Iikura; Takao Tsuneda; Takeshi Yanai; Kimihiko Hirao

We propose a new long-range correction scheme that combines generalized-gradient-approximation (GGA) exchange functionals in density-functional theory (DFT) with the ab initio Hartree–Fock exchange integral by using the standard error function. To develop this scheme, we suggest a new technique that constructs an approximate first-order density matrix that corresponds to a GGA exchange functional. The calculated results of the long-range correction scheme are found to support a previous argument that the lack of the long-range interactions in conventional exchange functionals may be responsible for the underestimation of 4s−3d interconfigurational energies of the first-row transition metals and for the overestimation of the longitudinal polarizabilities of π-conjugated polyenes in DFT calculations.


Journal of Chemical Physics | 2004

A long-range-corrected time-dependent density functional theory

Yoshihiro Tawada; Takao Tsuneda; Susumu Yanagisawa; Takeshi Yanai; Kimihiko Hirao

We apply the long-range correction (LC) scheme for exchange functionals of density functional theory to time-dependent density functional theory (TDDFT) and examine its efficiency in dealing with the serious problems of TDDFT, i.e., the underestimations of Rydberg excitation energies, oscillator strengths, and charge-transfer excitation energies. By calculating vertical excitation energies of typical molecules, it was found that LC-TDDFT gives accurate excitation energies, within an error of 0.5 eV, and reasonable oscillator strengths, while TDDFT employing a pure functional provides 1.5 eV lower excitation energies and two orders of magnitude lower oscillator strengths for the Rydberg excitations. It was also found that LC-TDDFT clearly reproduces the correct asymptotic behavior of the charge-transfer excitation energy of ethylene-tetrafluoroethylene dimer for the long intramolecular distance, unlike a conventional far-nucleus asymptotic correction scheme. It is, therefore, presumed that poor TDDFT results for pure functionals may be due to their lack of a long-range orbital-orbital interaction.


Journal of Chemical Physics | 2004

Multiresolution quantum chemistry: Basic theory and initial applications

Robert J. Harrison; George I. Fann; Takeshi Yanai; Zhengting Gan; Gregory Beylkin

We describe a multiresolution solver for the all-electron local density approximation Kohn-Sham equations for general polyatomic molecules. The resulting solutions are obtained to a user-specified precision and the computational cost of applying all operators scales linearly with the number of parameters. The construction and use of separated forms for operators (here, the Greens functions for the Poisson and bound-state Helmholtz equations) enable practical computation in three and higher dimensions. Initial applications include the alkali-earth atoms down to strontium and the water and benzene molecules.


Journal of Chemical Physics | 2008

Orbital optimization in the density matrix renormalization group, with applications to polyenes and β-carotene

Debashree Ghosh; Johannes Hachmann; Takeshi Yanai; Garnet Kin-Lic Chan

In previous work we have shown that the density matrix renormalization group (DMRG) enables near-exact calculations in active spaces much larger than are possible with traditional complete active space algorithms. Here, we implement orbital optimization with the DMRG to further allow the self-consistent improvement of the active orbitals, as is done in the complete active space self-consistent field (CASSCF) method. We use our resulting DMRG-CASSCF method to study the low-lying excited states of the all-trans polyenes up to C24H26 as well as beta-carotene, correlating with near-exact accuracy the optimized complete pi-valence space with up to 24 active electrons and orbitals, and analyze our results in the light of the recent discovery from resonance Raman experiments of new optically dark states in the spectrum.


Journal of Chemical Physics | 2011

Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: Theory and application to the study of chromium dimer

Yuki Kurashige; Takeshi Yanai

We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian.


Journal of Chemical Physics | 2009

High-performance ab initio density matrix renormalization group method: Applicability to large-scale multireference problems for metal compounds

Yuki Kurashige; Takeshi Yanai

This article presents an efficient and parallelized implementation of the density matrix renormalization group (DMRG) algorithm for quantum chemistry calculations. The DMRG method as a large-scale multireference electronic structure model is by nature particularly efficient for one-dimensionally correlated systems, while the present development is oriented toward applications for polynuclear transition metal compounds, in which the macroscopic one-dimensional structure of electron correlation is absent. A straightforward extension of the DMRG algorithm is proposed with further improvements and aggressive optimizations to allow its application with large multireference active space, which is often demanded for metal compound calculations. Special efficiency is achieved by making better use of sparsity and symmetry in the operator and wave function representations. By accomplishing computationally intensive DMRG calculations, the authors have found that a large number of renormalized basis states are required to represent high entanglement of the electron correlation for metal compound applications, and it is crucial to adopt auxiliary perturbative correction to the projected density matrix during the DMRG sweep optimization in order to attain proper convergence to the solution. Potential energy curve calculations for the Cr(2) molecule near the known equilibrium precisely predicted the full configuration interaction energies with a correlation space of 24 electrons in 30 orbitals [denoted by (24e,30o)]. The energies are demonstrated to be accurate to 0.6mE(h) (the error from the extrapolated best value) when as many as 10,000 renormalized basis states are employed for the left and right DMRG block representations. The relative energy curves for [Cu(2)O(2)](2+) along the isomerization coordinate were obtained from DMRG and other correlated calculations, for which a fairly large orbital space (32e,62o) is modeled as a full correlation space. The DMRG prediction nearly overlaps with the energy curve from the coupled cluster with singles, doubles, and perturbative triple [CCSD(T)] calculations, while the multireference complete active space self-consistent field (CASSCF) calculations with the small reference configuration (8e,8o) are found to overestimate the biradical character of the electronic state of [Cu(2)O(2)](2+) according to the one-electron density matrix analysis.


Nature | 2016

A pentanuclear iron catalyst designed for water oxidation

Masaya Okamura; Mio Kondo; Reiko Kuga; Yuki Kurashige; Takeshi Yanai; Shinya Hayami; Vijayendran K. K. Praneeth; Masaki Yoshida; Ko Yoneda; Shigeyuki Masaoka

Although the oxidation of water is efficiently catalysed by the oxygen-evolving complex in photosystem II (refs 1 and 2), it remains one of the main bottlenecks when aiming for synthetic chemical fuel production powered by sunlight or electricity. Consequently, the development of active and stable water oxidation catalysts is crucial, with heterogeneous systems considered more suitable for practical use and their homogeneous counterparts more suitable for targeted, molecular-level design guided by mechanistic understanding. Research into the mechanism of water oxidation has resulted in a range of synthetic molecular catalysts, yet there remains much interest in systems that use abundant, inexpensive and environmentally benign metals such as iron (the most abundant transition metal in the Earth’s crust and found in natural and synthetic oxidation catalysts). Water oxidation catalysts based on mononuclear iron complexes have been explored, but they often deactivate rapidly and exhibit relatively low activities. Here we report a pentanuclear iron complex that efficiently and robustly catalyses water oxidation with a turnover frequency of 1,900 per second, which is about three orders of magnitude larger than that of other iron-based catalysts. Electrochemical analysis confirms the redox flexibility of the system, characterized by six different oxidation states between FeII5 and FeIII5; the FeIII5 state is active for oxidizing water. Quantum chemistry calculations indicate that the presence of adjacent active sites facilitates O–O bond formation with a reaction barrier of less than ten kilocalories per mole. Although the need for a high overpotential and the inability to operate in water-rich solutions limit the practicality of the present system, our findings clearly indicate that efficient water oxidation catalysts based on iron complexes can be created by ensuring that the system has redox flexibility and contains adjacent water-activation sites.


Journal of Chemical Physics | 2010

Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory

Takeshi Yanai; Yuki Kurashige; Eric Neuscamman; Garnet Kin-Lic Chan

We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).


Molecular Physics | 2005

Multiresolution quantum chemistry in multiwavelet bases: time-dependent density functional theory with asymptotically corrected potentials in local density and generalized gradient approximations

Takeshi Yanai; Robert J. Harrison; Nicholas C. Handy

A multiresolution solver for fully numerical linear response calculations of excitation states via the time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) is presented. The linear response method Yanai et al. previously reported [J. Chem. Phys., submitted] was limited to the Tamm–Dancoff approximation and could only use the Hartree–Fock exchange and the local-spin density approximation (LSDA) with a crude asymptotic correction. The present development enables us to perform full TD-HF/DFT calculations employing generalized gradient approximation (GGA) exchange-correlation potentials as well as hybrid ones. The linear response of TD-HF/DFT is computed by means of iteratively solving the coupled integral equations with the Greens functions. In this study, Tozer and Handys asymptotic correction (AC) is applied to existing DFT exchange-correlations, and is found numerically stable and efficient. Furthermore, the new hybrid exchange-correlation functional CAM-B3LYP, which was recently proposed by Yanai et al. [Chem. Phys. Lett. 393, 51 (2004)], is implemented. The implementation requires a new separated representation of the integral kernel for the Coulomb-attenuated potential. We demonstrate linear response calculations free of basis set error for the excited states of Be, N2, C2H4 and C6H6 using LSDA, HCTH, CAM-B3LYP and PBE0 exchange-correlation functionals. The mean absolute errors of the C6H6 calculations with HCTH and CAM-B3LYP are 0.12 and 0.18 eV, respectively. The second derivative of exchange-correlation functionals is represented fully numerically at O(N) computation cost.


Journal of Chemical Physics | 2004

Multiresolution quantum chemistry in multiwavelet bases: Hartree–Fock exchange

Takeshi Yanai; George I. Fann; Zhenting Gan; Robert J. Harrison; Gregory Beylkin

In a previous study we reported an efficient, accurate multiresolution solver for the Kohn-Sham self-consisitent field (KS-SCF) method for general polyatomic molecules. This study presents an efficient numerical algorithm to evalute Hartree-Fock (HF) exchange in the multiresolution SCF method to solve the HF equations. The algorithm employs fast integral convolution with the Poission kernel in the nonstandard form, screening the sparse multiwavelet representation to compute results of the integral operator only where required by the nonlocal exchange operator. Localized molecular obitals are used to attain near linear scaling. Results for atoms and molecules demonstrate reliable precision and speed. Calculations for small water clusters demonstrate a total cost to compute the HF exchange potential for all n(occ) occpuied MOs scaling as O(n(occ) (1.5)).

Collaboration


Dive into the Takeshi Yanai's collaboration.

Top Co-Authors

Avatar

Yuki Kurashige

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garnet Kin-Lic Chan

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakub Chalupský

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

George I. Fann

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gregory Beylkin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Tran Nguyen Lan

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Masaaki Saitow

Graduate University for Advanced Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge