Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeyori Saheki is active.

Publication


Featured researches published by Takeyori Saheki.


The EMBO Journal | 2001

Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria

Luigi Palmieri; Beatriz Pardo; F.M. Lasorsa; A. del Arco; Keiko Kobayashi; Mikio Iijima; Michael J. Runswick; John E. Walker; Takeyori Saheki; Jorgina Satrústegui; Ferdinando Palmieri

The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF‐hand Ca2+‐binding motifs in their N‐terminal domains. Both proteins and their C‐terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H+. Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidentified aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca2+ on the external side of the inner mitochondrial membrane, where the Ca2+‐binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca2+ through a mechanism independent of Ca2+ entry into mitochondria, and suggest a novel mechanism of Ca2+ regulation of the aspartate/malate shuttle.


Nature Genetics | 1999

The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein.

Keiko Kobayashi; David S. Sinasac; Mikio Iijima; Andrew P. Boright; Laila Begum; Jeffrey R. Lee; Tomotsugu Yasuda; Sayaka Ikeda; Ryuki Hirano; Hiroki Terazono; Michael A. Crackower; Ikuko Kondo; Lap-Chee Tsui; Stephen W. Scherer; Takeyori Saheki

Citrullinaemia (CTLN) is an autosomal recessive disease caused by deficiency of argininosuccinate synthetase (ASS). Adult-onset type II citrullinaemia (CTLN2) is characterized by a liver-specific ASS deficiency with no abnormalities in hepatic ASS mRNA or the gene ASS (refs 1–17). CTLN2 patients (1/100,000 in Japan) suffer from a disturbance of consciousness and coma, and most die with cerebral edema within a few years of onset. CTLN2 differs from classical citrullinaemia (CTLN1, OMIM 215700) in that CTLN1 is neonatal or infantile in onset, with ASS enzyme defects (in all tissues) arising due to mutations in ASS on chromosome 9q34 (refs 18–21). We collected 118 CTLN2 families, and localized the CTLN2 locus to chromosome 7q21.3 by homozygosity mapping analysis of individuals from 18 consanguineous unions. Using positional cloning we identified a novel gene, SLC25A13, and found five different DNA sequence alterations that account for mutations in all consanguineous patients examined. SLC25A13 encodes a 3.4-kb transcript expressed most abundantly in liver. The protein encoded by SLC25A13, named citrin, is bipartite in structure, containing a mitochondrial carrier motif and four EF-hand domains, suggesting it is a calcium-dependent mitochondrial solute transporter with a role in urea cycle function.


Journal of Human Genetics | 2002

Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD)

Takeyori Saheki; Keiko Kobayashi

AbstractBy using homozygosity mapping and positional cloning, we have shown that adult-onset type II citrullinemia (CTLN2) is caused by mutations of the SLC25A13 gene, which is localized on chromosome 7q21.3 and encodes a mitochondrial solute carrier protein named citrin. So far, we have reported nine mutations, most of which cause loss of citrin, and we have established several methods for DNA diagnosis. These methods have shown that more than 90% of the patients diagnosed as suffering from CTLN2 by enzymatic analysis carry SLC25A13 mutations in both alleles, indicating that CTLN2 is caused by citrin deficiency. Furthermore, by using the same DNA diagnosis methods, we discovered that 70 neonates or infants suffering from a particular type of neonatal hepatitis carry the same SLC25A13 mutations. Since the symptoms of the neonates are different from those of the more severe CTLN2 and usually ameliorate without special treatment, we designated the neonatal disease neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). We conclude that citrin deficiency causes NICCD in neonates and CTLN2 in adults through the additional effects of genetic or environmental modifiers. Since the function of citrin, together with that of an isoform, aralar, was found to be as a mitochondrial aspartate glutamate carrier, the various symptoms of NICCD and CTLN2 may be understood as caused by defective aspartate export from the mitochondria to the cytosol and defects in the malate aspartate shuttle. It is, however, still difficult to understand the cause of the hepatic deficiency of argininosuccinate synthetase protein in CTLN2.


Developmental Brain Research | 2003

Developmental changes in the Ca2+-regulated mitochondrial aspartate–glutamate carrier aralar1 in brain and prominent expression in the spinal cord

Milagros Ramos; Araceli del Arco; Beatriz Pardo; Alberto Martínez-Serrano; Juan Ramón Martínez-Morales; Keiko Kobayashi; Tomotsugu Yasuda; Elena Bogónez; Paola Bovolenta; Takeyori Saheki; Jorgina Satrústegui

Aralar1 and citrin are two isoforms of the mitochondrial carrier of aspartate-glutamate (AGC), a calcium regulated carrier, which is important in the malate-aspartate NADH shuttle. The expression and cell distribution of aralar1 and citrin in brain cells has been studied during development in vitro and in vivo. Aralar1 is the only isoform expressed in neurons and its levels undergo a marked increase during in vitro maturation, which is higher than the increase in mitochondrial DNA in the same time window. The enrichment in aralar1 per mitochondria during neuronal maturation is associated with a prominent rise in the function of the malate-aspartate NADH shuttle. Paradoxically, during in vivo development of rat or mouse brain there is very little postnatal increase in total aralar1 levels per mitochondria. This is explained by the fact that astrocytes develop postnatally, have aralar1 levels much lower than neurons, and their increase masks that of aralar1. Aralar1 mRNA and protein are widely expressed throughout neuron-rich areas in adult mouse CNS with clear enrichments in sets of neuronal nuclei in the brainstem and, particularly, in the ventral horn of the spinal cord. These aralar1-rich neurons represent a subset of the cytochrome oxidase-rich neurons in the same areas. The presence of aralar1 could reflect a tonic activity of these neurons, which is met by the combination of high malate-aspartate NADH shuttle and respiratory chain activities.


Human Genetics | 2000

Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia

Tomotsugu Yasuda; Naoki Yamaguchi; Keiko Kobayashi; Ikumi Nishi; Hidehito Horinouchi; Md. Abdul Jalil; Meng Xian Li; Miharu Ushikai; Mikio Iijima; Ikuko Kondo; Takeyori Saheki

Adult-onset type II citrullinemia (CTLN2) is characterized by a liver-specific deficiency of argininosuccinate synthetase (ASS) protein. We have recently identified the gene responsible for CTLN2, viz., SLC25A13, which encodes a calcium-binding mitochondrial carrier protein, designated citrin, and found five mutations of the SLC25A13 gene in CTLN2 patients. In the present study, we have identified two novel mutations, 1800ins1 and R605X, in SLC25A13 mRNA and the SLC25A13 gene. Diagnostic analysis for the seven mutations in 103 CTLN2 patients diagnosed by biochemical and enzymatic studies has revealed that 102 patients had one or two of the seven mutations and 93 patients were homozygotes or compound heterozygotes. These results indicate that CTLN2 is caused by an abnormality in the SLC25A13 gene, and that our criteria for CTLN2 before DNA diagnosis are correct. Five of 22 patients from consanguineous unions have been shown to be compound heterozygotes, suggesting a high frequency of the mutated genes. The frequency of homozygotes is calculated to be more than 1 in 20,000 from carrier detection (6 in 400 individuals tested) in the Japanese population. We have detected no cross-reactive immune materials in the liver of CTLN2 patients with any of the seven mutations by Western blot analysis with anti-human citrin antibody. From these findings, we hypothesize that CTLN2 is caused by a complete deletion of citrin, although the mechanism of ASS deficiency is still unknown.


Biochemical and Biophysical Research Communications | 1991

Animal model of systemic carnitine deficiency: Analysis in C3H-H-2° strain of mouse associated with juvenile visceral steatosis

Masamichi Kuwajima; Norio Kono; Masahisa Horiuchi; Yasushi Imamura; Akira Ono; Yoshiaki Inui; Sumio Kawata; Tsutomu Koizumi; Takeyori Saheki; Seiichiro Tarui

Abstract We analyzed carnitine profiles in C3H-H-2° strain of mouse associated with fatty liver, hyperammonemia and hypoglycemia (Koizumi et al., 1988). Carnitine levels in serum, liver and muscle of mouse with fatty liver were markedly decreased in comparison with those of control mouse (littermates without fatty liver). This is a useful animal model to analyze the role of carnitine in lipid, amino acid and carbohydrate metabolism.


Journal of Biological Chemistry | 2006

Essential role of aralar in the transduction of small Ca2+ signals to neuronal mitochondria.

Beatriz Pardo; Laura Contreras; Antonio Serrano; Milagros Ramos; Keiko Kobayashi; Mikio Iijima; Takeyori Saheki; Jorgina Satrústegui

Aralar, the neuronal Ca2+-binding mitochondrial aspartate-glutamate carrier, has Ca2+ binding domains facing the extramitochondrial space and functions in the malate-aspartate NADH shuttle (MAS). Here we showed that MAS activity in brain mitochondria is stimulated by extramitochondrial Ca2+ with an S0.5 of 324 nm. By employing primary neuronal cultures from control and aralar-deficient mice and NAD(P)H imaging with two-photon excitation microscopy, we showed that lactate utilization involves a substantial transfer of NAD(P)H to mitochondria in control but not aralar-deficient neurons, in agreement with the lack of MAS activity associated with aralar deficiency. The increase in mitochondrial NAD(P)H was greatly potentiated by large [Ca2+]i signals both in control and aralar-deficient neurons, showing that these large signals activate the Ca2+ uniporter and mitochondrial dehydrogenases but not MAS activity. On the other hand, small [Ca2+]i signals potentiate the increase in mitochondrial NAD(P)H only in control but not in aralar-deficient neurons. We concluded that neuronal MAS activity is selectively activated by small Ca2+ signals that fall below the activation range of the Ca2+ uniporter and plays an essential role in mitochondrial Ca2+ signaling.


Journal of Inherited Metabolic Disease | 2007

Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD)

Toshihiro Ohura; Keiko Kobayashi; Y. Tazawa; Daiki Abukawa; Osamu Sakamoto; Shigeru Tsuchiya; Takeyori Saheki

SummaryWe clarified the clinical features of NICCD (neonatal intrahepatic cholestasis caused by citrin deficiency) by retrospective review of symptoms, management and long-term outcome of 75 patients. The data were generated from questionnaires to paediatricians in charge of the patients. Thirty of the patients were referred to hospitals before 1 month of age because of positive results in newborn screening (hypergalactosaemia, hypermethioninaemia, and hyperphenylalaninaemia). The other 45, the screen-negative patients, were referred to hospitals with suspected neonatal hepatitis or biliary atresia because of jaundice or discoloured stool. Most of the screen-negative patients presented before 4 months of age, and 11 had failure to thrive. Laboratory data showed elevated serum bile acid concentrations, hypoproteinaemia, low levels of vitamin K-dependent coagulation factors and hypergalactosaemia. Hypoglycaemia was detected in 18 patients. Serum amino acid analyses showed significant elevation of citrulline and methionine concentrations. Most of the patients were given a lactose-free and/or medium-chain triglyceride-enriched formula and fat-soluble vitamins. Symptoms resolved in all but two of the patients by 12 months of age. The two patients with unresolved symptoms suffered from progressive liver failure and underwent liver transplantation before their first birthday. Another patient developed citrullinaemia type II (CTLN2) at age 16 years. It is important to recognize that NICCD is not always a benign condition.


Journal of Cerebral Blood Flow and Metabolism | 2011

Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation

Beatriz Pardo; Tiago B. Rodrigues; Laura Contreras; Miguel Garzón; Irene Llorente-Folch; Keiko Kobayashi; Takeyori Saheki; Sebastián Cerdán; Jorgina Satrústegui

The glutamate–glutamine cycle faces a drain of glutamate by oxidation, which is balanced by the anaplerotic synthesis of glutamate and glutamine in astrocytes. De novo synthesis of glutamate by astrocytes requires an amino group whose origin is unknown. The deficiency in Aralar/AGC1, the main mitochondrial carrier for aspartate–glutamate expressed in brain, results in a drastic fall in brain glutamine production but a modest decrease in brain glutamate levels, which is not due to decreases in neuronal or synaptosomal glutamate content. In vivo 13C nuclear magnetic resonance labeling with 13C2acetate or (1-13C) glucose showed that the drop in brain glutamine is due to a failure in glial glutamate synthesis. Aralar deficiency induces a decrease in aspartate content, an increase in lactate production, and lactate-to-pyruvate ratio in cultured neurons but not in cultured astrocytes, indicating that Aralar is only functional in neurons. We find that aspartate, but not other amino acids, increases glutamate synthesis in both control and aralar-deficient astrocytes, mainly by serving as amino donor. These findings suggest the existence of a neuron-to-astrocyte aspartate transcellular pathway required for astrocyte glutamate synthesis and subsequent glutamine formation. This pathway may provide a mechanism to transfer neuronal-born redox equivalents to mitochondria in astrocytes.


Journal of Neurology, Neurosurgery, and Psychiatry | 2001

Type II (adult onset) citrullinaemia: clinical pictures and the therapeutic effect of liver transplantation

Shu-ichi Ikeda; Masahide Yazaki; Yo-ichi Takei; Toshihiko Ikegami; Yasuhiko Hashikura; Seiji Kawasaki; Masahide Iwai; Keiko Kobayashi; Takeyori Saheki

OBJECTIVE Adult onset type II citrullinemia is an inherited disorder of amino acid metabolism caused by a deficiency of liver specific argininosuccinate synthetase activity. Most of the patients with this disease were reported in Japan and therefore, this disease has not been well recognised outside this country. The detailed clinical pictures of the patients with type II citrullinaemia are reported and their outcomes after liver transplantation referred to. METHODS Ten patients with this disease were evaluated. Seven of them underwent liver transplants using a graft obtained from a healthy family member. RESULTS There were six men and four women; the age of onset of encephalopathy ranged from 17 to 51 years. The initial symptom in nine patients was sudden onset disturbance of consciousness, and one patient had long been regarded as having a chronic progressive psychotic illness. High concentrations of plasma citrulline and ammonia were commonly seen on admission. Although brain CT or MRI lacked any consistent findings, the EEG was abnormal in all patients, showing diffuse slow waves. Additionally, in five patients chronic pancreatitis preceded the onset of encephalopathy. After liver transplantation the metabolic abnormalities, including abnormal plasma concentrations of citrulline and ammonia, were immediately corrected and all neuropsychic symptoms soon disappeared, except for impaired cognitive function in one patient. Six out of these seven patients returned to their previous social lives, including work. CONCLUSIONS The clinical concept of adult onset type II citrullinaemia coincides well with the range of hepatic encephalopathy, and liver transplantation is a very promising therapeutic approach.

Collaboration


Dive into the Takeyori Saheki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masahisa Horiuchi

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorgina Satrústegui

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge