Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taku Nedachi is active.

Publication


Featured researches published by Taku Nedachi.


The EMBO Journal | 2006

Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation

Seung Jin Han; Sergio Vaccari; Taku Nedachi; Carsten B Andersen; Kristina S. Kovacina; Richard A. Roth; Marco Conti

cGMP‐inhibited cAMP phosphodiesterase 3A (PDE3A) is expressed in mouse oocytes, and its function is indispensable for meiotic maturation as demonstrated by genetic ablation. Moreover, PDE3 activity is required for insulin/insulin‐like growth factor‐1 stimulation of Xenopus oocyte meiotic resumption. Here, we investigated the cAMP‐dependent protein kinase B (PKB)/Akt regulation of PDE3A and its impact on oocyte maturation. Cell‐free incubation of recombinant mouse PDE3A with PKB/Akt or cAMP‐dependent protein kinase A catalytic subunits leads to phosphorylation of the PDE3A protein. Coexpression of PDE3A with constitutively activated PKB/Akt (Myr‐Akt) increases PDE activity as well as its phosphorylation state. Injection of pde3a mRNA potentiates insulin‐dependent maturation of Xenopus oocytes and rescues the phenotype of pde3−/− mouse oocytes. This effect is greatly decreased by mutation of any of the PDE3A serines 290–292 to alanine in both Xenopus and mouse. Microinjection of myr‐Akt in mouse oocytes causes in vitro meiotic maturation and this effect requires PDE3A. Collectively, these data indicate that activation of PDE3A by PKB/Akt‐mediated phosphorylation plays a role in the control of PDE3A activity in mammalian oocytes.


American Journal of Physiology-endocrinology and Metabolism | 2009

Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes

Taku Nedachi; Hiroyasu Hatakeyama; Tatsuyoshi Kono; Masaaki Sato; Makoto Kanzaki

Physical exercise triggers the release of several cytokines/chemokines from working skeletal muscles, but the underlying mechanism(s) by which skeletal muscles decipher and respond to highly complex contractile stimuli remains largely unknown. In an effort to investigate the regulatory mechanisms of the expressions of two contraction-inducible CXC chemokines, CXCL1/KC and CXCL5/LIX, in contracting skeletal muscle cells, we took advantage of our in vitro exercise model using highly developed contractile C(2)C(12) myotubes, which acquire properties similar to those of in vivo skeletal muscle via manipulation of Ca(2+) transients with electric pulse stimulation (EPS). Production of these CXC chemokines was immediately augmented by EPS-evoked contractile activity in a manner dependent on the activities of JNK and NF-kappaB, but not p38, ERK1/2, or calcineurin. Intriguingly, exposure of myotubes to cyclic mechanical stretch also induced expression of these CXC chemokines; however, a much longer period of stimulation (approximately 12 h) was required, despite rapid JNK phosphorylation. We also demonstrate herein that CXCL1/KC and CXCL5/LIX have the ability to raise intracellular Ca(2+) concentrations via CXCR2-mediated activation of pertussis toxin-sensitive Galpha(i) proteins in C(2)C(12) myoblasts, an action at least partially responsible for their migration and differentiation. Although we revealed a possible negative feedback regulation of their own production in response to the contractile activity in differentiated myotubes, exogenous administration of these CXC chemokines did not acutely influence either insulin-induced Akt phosphorylation or GLUT4 translocation in C(2)C(12) myotubes. Taken together, these data shed light on the fundamental characteristics of contraction-inducible CXC chemokine production and their potential roles in skeletal muscle cells.


American Journal of Physiology-endocrinology and Metabolism | 2008

Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FoxO3a in C2C12 myocytes

Taku Nedachi; Akito Kadotani; Miyako Ariga; Hideki Katagiri; Makoto Kanzaki

Nutrition availability is one of the major environmental signals influencing cell fate, such as proliferation, differentiation, and apoptosis, often functioning in concert with other humoral factors, including insulin. Herein, we show that low-serum-induced differentiation of C(2)C(12) myocytes is significantly hampered under low glucose (LG; 5 mM) compared with high glucose (HG; 22.5 mM) conditions, concurrently with nuclear accumulation of SIRT1, an NAD(+)-dependent deacetylase, and FoxO3a, both of which are implicated in the negative regulation of myogenesis. Intriguingly, insulin appears to exert opposite actions, depending on glucose availability, with regard to the regulation of SIRT1 and FoxO3a abundance, which apparently contributes to modulating the potency of insulins myogenic action. Namely, insulin exerts a potent myogenic effect in the presence of sufficient glucose, whereas insulin is unable to exert its myogenic action under LG conditions, since insulin evokes massive upregulation of both SIRT1 and FoxO3a in the absence of sufficient ambient glucose. In addition, the hampered differentiation state under LG is significantly restored by sirtinol, a SIRT1 inhibitor, whereas insulin abolished this sirtinol-dependent restoration, indicating that insulin can function as a negative as well as a positive myogenic factor depending on glucose availability. Taken together, our data reveal the importance of ambient glucose levels in the regulation of myogenesis and also in the determination of insulins myogenic potency, which is achieved, at least in part, through regulation of the cellular contents and localization of SIRT1 and FoxO3a in differentiating C(2)C(12) myocytes.


Journal of Biological Chemistry | 2008

Functional Role of Sortilin in Myogenesis and Development of Insulin-responsive Glucose Transport System in C2C12 Myocytes

Miyako Ariga; Taku Nedachi; Hideki Katagiri; Makoto Kanzaki

Sortilin has been implicated in the formation of insulin-responsive GLUT4 storage vesicles in adipocytes by regulating sorting events between the trans-Golgi-network and endosomes. We herein show that sortilin serves as a potent myogenic differentiation stimulator for C2C12 myocytes by cooperatively functioning with p75NTR, which subsequently further contributes to development of the insulin-responsive glucose transport system in C2C12 myotubes. Sortilin expression was up-regulated upon C2C12 differentiation, and overexpression of sortilin in C2C12 cells significantly stimulated myogenic differentiation, a response that was completely abolished by either anti-p75NTR- or anti-nerve growth factor (NGF)-neutralizing antibodies. Importantly, small interference RNA-mediated suppression of endogenous sortilin significantly inhibited C2C12 differentiation, indicating the physiological significance of sortilin expression in the process of myogenesis. Although sortilin overexpression in C2C12 myotubes improved insulin-induced 2-deoxyglucose uptake, as previously reported, this effect apparently resulted from a decrease in the cellular content of GLUT1 and an increase in GLUT4 via differentiation-dependent alterations at both the gene transcriptional and the post-translational level. In addition, cellular contents of Ubc9 and SUMO-modified proteins appeared to be increased by sortilin overexpression. Taken together, these data demonstrate that sortilin is involved not only in development of the insulin-responsive glucose transport system in myocytes, but is also directly involved in muscle differentiation via modulation of proNGF-p75NTR.


Neuroscience | 2011

Progranulin enhances neural progenitor cell proliferation through glycogen synthase kinase 3β phosphorylation.

Taku Nedachi; T. Kawai; Takashi Matsuwaki; Keitaro Yamanouchi; Masugi Nishihara

Progranulin (PGRN) is an estrogen-inducible growth factor thought to affect multiple processes in the CNS, including brain sexual differentiation, adult neurogenesis in the hippocampus, and development of neurodegenerative diseases. However, the precise physiological functions of PGRN in individual nerve cells are not fully understood. The aim of the present study was to enhance the understanding of PGRN function in the CNS by investigating the effects of PGRN on neural progenitor cells (NPCs). We found that significant amounts of endogenous PGRN were secreted from isolated NPCs in cultures. To assess the bioactivities of endogenous and exogenous PGRN, we studied NPCs derived from wild-type mice (WT-NPCs) and PGRN-deficient mice (KO-NPCs). We found that proliferation of KO-NPCs was significantly enhanced by PGRN treatment; however, PGRN treatment apparently did not affect proliferation of WT-NPCs perhaps because of the high levels of endogenous PGRN expression. NPC death and asymmetric cellular division of KO-NPCs and WT-NPCs, which results in production of neural stem cells, astrocytes, or oligodendrocytes, were not affected by PGRN treatment. We also investigated the signaling mechanism(s) that mediate PGRN-induced NPC proliferation and found that phosphorylation of serine 9 (S9) of glycogen synthase kinase 3-beta (GSK3β), which was dependent on phosphatidylinositol 3-kinase (PI3K) activity, was induced by PGRN treatment. In addition, a GSK3β-specific inhibitor enhanced NPC proliferation. Taken together, our observations indicate that PGRN enhanced NPC proliferation, at least in part, via inducing GSK3β phosphorylation.


Biochemical Journal | 2003

Protein kinase B/Akt is essential for the insulin- but not progesterone-stimulated resumption of meiosis in Xenopus oocytes.

Carsten B Andersen; Hiroshi Sakaue; Taku Nedachi; Kristina S. Kovacina; Carol Clayberger; Marco Conti; Richard A. Roth

In the present study, we have characterized the Xenopus Akt expressed in oocytes from the African clawed frog Xenopus laevis and tested whether its activity is required for the insulin- and progesterone-stimulated resumption of meiosis. A cDNA encoding the Xenopus Akt was isolated and sequenced, and its expression in the Xenopus oocyte was confirmed by reverse transcription PCR and Northern blotting. Using phosphospecific antibodies and enzyme assays, a large and rapid activation of the Xenopus Akt was observed upon insulin stimulation of the oocytes. In contrast, progesterone caused a modest activation of this kinase with a slower time course. To test whether the activation of Akt was required in the stimulation of the resumption of meiosis, we have utilized two independent approaches: a functional dominant negative Akt mutant and an inhibitory monoclonal antibody. Both the mutant Akt, as well as the inhibitory monoclonal antibody, completely blocked the insulin-stimulated resumption of meiosis. In contrast, both treatments only partially inhibited (by approx. 30%) the progesterone-stimulated resumption of meiosis when submaximal doses of this hormone were utilized. These data demonstrate a crucial role for Akt in the insulin-stimulated cell cycle progression of Xenopus oocytes, whereas Akt may have an ancillary function in progesterone signalling.


Biochimica et Biophysica Acta | 2001

Long-term hormonal regulation of the cAMP-specific phosphodiesterases in cultured FRTL-5 thyroid cells.

Shin-Ichiro Takahashi; Taku Nedachi; Toshiaki Fukushima; Kota Umesaki; Yoshiaki Ito; Fumihiko Hakuno; Judson J. Van Wyk; Marco Conti

Thyrotropin (TSH) and pharmacological agents that elevate intracellular cAMP concentrations potentiate the mitogenic response of FRTL-5 thyroid cells to insulin-like growth factor-I (IGF-I). This study was undertaken to determine the role of cAMP phosphodiesterases (PDEs) in this TSH-dependent regulation. Incubation of FRTL-5 cells with TSH, forskolin, or dibutyryl cAMP gradually induced the PDE activity, and treatment for 24 h produced a marked increase in type 4 high affinity cAMP PDEs. Under basal conditions, transcripts corresponding to PDE4A, PDE4B, PDE4C, and PDE4D were present. Stimulation for 24 h by TSH, forskolin or dibutyryl cAMP induced an increase in mRNA levels of PDE4B, PDE4D, and PDE4C. To understand the role of this cAMP-dependent PDE regulation in the potentiation of the mitogenic response to IGF-I, thymidine incorporation into DNA in response to IGF-I and TSH was measured in the absence or presence of PDE inhibitors. Exposure of the cells to 3-isobutyl-1-methylxanthine (IBMX) or RO 20-1724 had opposing effects on thymidine incorporation into DNA, depending on the stimulus applied. When IGF-I was used alone, both IBMX and RO 20-1724 potentiated IGF-I-stimulated thymidine incorporation. However, when IGF-I and TSH at high concentrations were used in combination, these PDE inhibitors blocked thymidine incorporation into DNA. In addition, these inhibitors depressed the synergistic increase in cyclin D1 and cyclin D- or cyclin E-associated cyclin-dependent kinase (CDK) activity that is induced by TSH and IGF-I. Increased CDK activities have been shown to play a crucial role in progression through the G(1)/S phase of the cell cycle. These data demonstrate that TSH produces marked changes in the cAMP degradative pathway of FRTL-5 cells by regulating the expression of cAMP PDEs. The regulation of the intracellular cAMP levels by this mechanism may contribute to the TSH- and IGF-I-dependent control of the entry into the S phase of the cell cycle through changes in the cyclin/CDK system in FRTL-5 cells.


Development | 2004

Potential role of protein tyrosine phosphatase nonreceptor type 13 in the control of oocyte meiotic maturation

Taku Nedachi; Marco Conti

Protein tyrosine phosphatase nonreceptor type 13 (PTPN13) is a tyrosine phosphatase with multiple interacting domains that has been implicated previously in the regulation of apoptosis. We provide evidence that PTPN13 plays an important role in the control of the meiotic cell cycle. A cDNA coding for PTPN13 was isolated during the screening for the substrate of protein kinase A expressed in mammalian oocytes. PTPN13 is expressed in both mouse and Xenopus oocytes and is a substrate for protein kinase A in vitro and in vivo. Expression of a truncated constitutively-active PTPN13 in Xenopus oocytes synergizes with progesterone in the induction of germinal vesicle breakdown, the translation of Mos, the phosphorylation of Erk and the dephosphorylation of Cdc2. The phosphatase activity of PTPN13 is required for this synergism. Oocyte injection with specific small interference RNA downregulates the expression of mRNA for PTPN13 and blocks oocyte maturation induced by progesterone, a blockade that can be overcome by Cdc25 overexpression. These findings indicate that PTPN13 is involved in the regulation of the meiotic cell cycle.


Molecular Endocrinology | 2012

Phosphatidylinositol 3-Kinase-Binding Protein, PI3KAP/XB130, Is Required for cAMP-induced Amplification of IGF Mitogenic Activity in FRTL-5 Thyroid Cells

Daisuke Yamanaka; Takeshi Akama; Toshiaki Fukushima; Taku Nedachi; Kazuhiro Chida; Shiro Minami; Koichi Suzuki; Fumihiko Hakuno; Shin-Ichiro Takahashi

We previously demonstrated that long-term pretreatment of rat FRTL-5 thyroid cells with TSH or cAMP-generating reagents potentiated IGF-I-dependent DNA synthesis. Under these conditions, cAMP treatment increased tyrosine phosphorylation of a 125-kDa protein (p125) and its association with a p85 regulatory subunit of phosphatidylinositol 3-kinase (p85 PI3K), which were suggested to mediate potentiation of DNA synthesis. This study was undertaken to identify p125 and to elucidate its roles in potentiation of DNA synthesis induced by IGF-I. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis revealed p125 to be a rat ortholog of human XB130, which we named PI3K-associated protein (PI3KAP). cAMP treatment elevated PI3KAP/XB130 mRNA and protein levels as well as tyrosine phosphorylation and interaction with p85 PI3K leading to increased PI3K activities associated with PI3KAP/XB130, supporting the role of PI3KAP/XB130 in DNA synthesis potentiation. Importantly, PI3KAP/XB130 knockdown attenuated cAMP-dependent potentiation of IGF-I-induced DNA synthesis. Furthermore, c-Src was associated with PI3KAP/XB130 and was activated in response to cAMP. Addition of Src family kinase inhibitors, PP1 or PP2, during cAMP treatment abolished tyrosine phosphorylation of PI3KAP/XB130 and its interaction with p85 PI3K. Finally, introduction of PI3KAP/XB130 into NIH3T3 fibroblasts lacking endogenous PI3KAP/XB130 enhanced IGF-I-induced DNA synthesis; however, a mutant Y72F incapable of binding to p85 PI3K did not show this response. Together, these data indicate that cAMP-dependent induction of PI3KAP/XB130, which is associated with PI3K, is required for enhancement of IGF mitogenic activities.


Endocrinology | 2008

Distinct Modes of Activation of Phosphatidylinositol 3-Kinase in Response to Cyclic Adenosine 3′, 5′-Monophosphate or Insulin-Like Growth Factor I Play Different Roles in Regulation of Cyclin D1 and p27Kip1 in FRTL-5 Cells

Toshiaki Fukushima; Taku Nedachi; Hidenori Akizawa; Masakazu Akahori; Fumihiko Hakuno; Shinichiro Takahashi

Bioactivities of IGFs in various cells are often potentiated in the presence of other hormones. In previous studies we showed that pretreatment of rat FRTL-5 thyroid cells with TSH or other cAMP-generating agents markedly potentiated DNA synthesis induced by IGF-I. Under these conditions we found that phosphatidylinositol (PI) 3-kinase was activated in response to either cAMP or IGF stimulus, and both activation modes were indispensable for the potentiation of DNA synthesis. The present studies were undertaken to elucidate how cAMP and/or IGF-I stimulus regulated the G1 cyclin-cyclin dependent kinase (CDK)-inhibitor system, and to determine the roles of PI 3-kinase activation by cAMP or IGF-I stimulus in this system. We found that cAMP pretreatment enhanced IGF-I-dependent increases in cyclin D1, due to synergistic increases in mRNA and elevation of translation rates. Furthermore, cAMP pretreatment enhanced IGF-I-induced protein degradation of the CDK inhibitor, p27(Kip1). These changes well explained an increase in cyclin E, leading to marked activation of G1 CDKs, followed by retinoblastoma protein phosphorylation. Our results using a PI 3-kinase inhibitor showed that cAMP-dependent PI 3-kinase activation plays an important role in the increase in cyclin D1 translation. In contrast, IGF-I-dependent PI 3-kinase activation was required for the increase in cyclin D1 mRNA levels and degradation of p27(Kip1). Together, the present study elucidates the role of cAMP and IGF-I in differentially activating PI 3-kinase as a mediator of multiple molecular events. These events converge in the regulation of cyclin D1 and p27(Kip1), leading to cAMP-dependent potentiation of IGF-I-dependent CDK activation and DNA synthesis.

Collaboration


Dive into the Taku Nedachi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Conti

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge