Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takuma Mihara is active.

Publication


Featured researches published by Takuma Mihara.


Journal of Pharmacology and Experimental Therapeutics | 2007

Pharmacological Characterization of a Novel, Potent Adenosine A1 and A2A Receptor Dual Antagonist, 5-[5-Amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in Models of Parkinson's Disease and Cognition

Takuma Mihara; Kayoko Mihara; Junko Yarimizu; Yasuyuki Mitani; Ritsuko Matsuda; Hiroko Yamamoto; Satoshi Aoki; Atsushi Akahane; Akinori Iwashita; Nobuya Matsuoka

Central adenosine A2A receptor is a promising target for drugs to treat Parkinsons disease (PD), and the central blockade of adenosine A1 receptor improves cognitive function. In the present study, we investigated the effect of a novel adenosine A1 and A2A dual antagonist, 5-[5-amino-3-(4-fluorophenyl) pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in animal models of PD and cognition. The binding affinities of ASP5854 for human A1 and A2A receptors were 9.03 and 1.76 nM, respectively, with higher specificity and no species differences. ASP5854 also showed antagonistic action on A1 and A2A agonist-induced increases of intracellular Ca2+ concentration. ASP5854 ameliorated A2A agonist 2-[p-(2-carboxyethyl) phenethylamino]-5′-N-ethylcarboxamidoadenosine (CGS21680)- and haloperidol-induced catalepsy in mice, with the minimum effective doses of 0.32 and 0.1 mg/kg, respectively, and it also improved haloperidol-induced catalepsy in rats at doses higher than 0.1 mg/kg. In unilateral 6-hydroxydopamine-lesioned rats, ASP5854 significantly potentiated l-dihydroxyphenylalanine (l-DOPA)-induced rotational behavior at doses higher than 0.032 mg/kg. ASP5854 also significantly restored the striatal dopamine content reduced by 1-metyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment in mice at doses higher than 0.1 mg/kg. Furthermore, in the rat passive avoidance test, ASP5854 significantly reversed the scopolamine-induced memory deficits, whereas the specific adenosine A2A antagonist 8-((E)-2-(3,4-dimethoxyphenyl)ethenyl)-1,3-diethyl-7-methyl-3,7-dihydro-1H-purine-2,6-dione (KW-6002; istradefylline) did not. Scopolamine- or 5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate) (MK-801)-induced impairment of spontaneous alternation in the mouse Y-maze test was ameliorated by ASP5854, whereas KW-6002 did not exert improvement at therapeutically relevant dosages. These results demonstrate that the novel, selective, and orally active dual adenosine A1 and A2A receptors antagonist ASP5854 improves motor impairments, is neuroprotective via A2A antagonism, and also enhances cognitive function through A1 antagonism.


Behavioural Brain Research | 2011

Two models for weight gain and hyperphagia as side effects of atypical antipsychotics in male rats: Validation with olanzapine and ziprasidone

Miwako Shobo; Hiroshi Yamada; Takuma Mihara; Yuji Kondo; Megumi Irie; Katsuya Harada; Keni Ni; Nobuya Matsuoka; Yukihiko Kayama

Body weight gain is one of the most serious side effects associated with clinical use of antipsychotics. However, the mechanisms by which antipsychotics induce body weight gain are unknown, and no reliable animal models of antipsychotics-induced weight gain have been established. The present studies were designed to establish male rat models of weight gain induced by chronic and acute treatment with antipsychotics. Six-week chronic treatment with olanzapine (5, 7.5, and 10mg/kg/day) in male Sprague-Dawley rats fed a daily diet resembling a human macronutrient diet, significantly increased body weight gain and weight of fatty tissues. In contrast, ziprasidone (1.25, 2.5, and 5mg/kg/day) administration caused no observable adverse effects. We then investigated feeding behavior with acute antipsychotic treatment in male rats using an automated food measurement apparatus. Rats were allowed restricted access to normal laboratory chow (4h/day). With acute olanzapine (0.5, 1, and 2mg/kg, i.p.) treatment in the light phase, food intake volume and duration were significantly increased, while treatment with ziprasidone (0.3, 1, and 3mg/kg, i.p.) did not increase food intake volume or meal time duration. Findings from the present studies showed that chronic treatment with olanzapine in male rats induced body weight gain, and acute injection induced hyperphagia, suggesting that hyperphagia may be involved in the weight gain and obesity-inducing properties of chronically administered olanzapine. These animal models may provide useful experimental platforms for analysis of the mechanism of hyperphagia and evaluating the potential risk of novel antipsychotics to induce weight gain in humans.


The Journal of Nuclear Medicine | 2008

Brain Adenosine A2A Receptor Occupancy by a Novel A1/A2A Receptor Antagonist, ASP5854, in Rhesus Monkeys: Relationship to Anticataleptic Effect

Takuma Mihara; Akihiro Noda; Hiroshi Arai; Kayoko Mihara; Akinori Iwashita; Yoshihiro Murakami; Takahiro Matsuya; Sosuke Miyoshi; Shintaro Nishimura; Nobuya Matsuoka

The purpose of the present study was to measure adenosine A2A receptor (A2AR) occupancy in the brain by a novel adenosine A1/A2A antagonist, 5-[5-amino-3-(4fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), and to determine the degree of receptor occupancy necessary to inhibit haloperidol-induced catalepsy in rhesus monkeys. Methods: A2AR occupancy by ASP5854 (0.001–0.1 mg/kg) was examined in the striatum using an A2AR-specific radiotracer, 11C-SCH442416, and PET in conscious rhesus monkeys. A2AR occupancy was monitored after a single intravenous administration of ASP5854 in 3 animals, and a dynamic PET scan was performed at 1, 4, and 8 h after an intravenous bolus injection of the tracer for approximately 740 MBq. Catalepsy was induced by haloperidol (0.03 mg/kg, intramuscularly) and examined for incidence and duration. Results: ASP5854 dose-dependently increased A2AR occupancy in the striatum and showed long-lasting occupancy even after the reduction of plasma concentration. Haloperidol induced severe catalepsy at 40 min after intramuscular injection. The incidence and duration of cataleptic posture were dose-dependently reduced by ASP5854 at 1 h after oral administration, and the minimum ED50 value was 0.1 mg/kg. Administration of a dose of 0.1 mg/kg yielded a plasma concentration of 97 ± 16.3 ng/mL, which corresponded to 85%–90% of A2AR occupancy. Conclusion: These results showed that ASP5854 antagonized A2AR in the striatum, and the dissociation from A2AR was relatively slow. In addition, more than 85% A2AR occupancy by ASP5854 resulted in an inhibition of haloperidol-induced catalepsy. Thus, such a pharmacodynamic study directly demonstrates both the kinetics of a drug in the brain and the relationship between dose-dependent receptor occupancy and plasma level.


Behavioural Brain Research | 2008

A novel adenosine A1 and A2A receptor antagonist ASP5854 ameliorates motor impairment in MPTP-treated marmosets: Comparison with existing anti-Parkinson's disease drugs

Takuma Mihara; Akinori Iwashita; Nobuya Matsuoka

Recent evidence indicates that adenosine A(2A) receptor antagonists hold therapeutic potential for the treatment of Parkinsons disease (PD). A study on the novel adenosine A(1) and A(2A) receptor dual antagonist 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854) showed it to be effective in various rodents models of PD and cognition. In the present study, we further investigated the potential of ASP5854 as an anti-PD drug using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets, which is a highly predictive model of clinical efficacy in PD, and compared its effect with those of existing anti-PD drugs. ASP5854 significantly and dose-dependently improved the total motor disability score for 7h at doses higher than 1mg/kg, and significantly increased total locomotor activity at doses higher than 0.1mg/kg without adverse effects. l-3,4-Dihydroxyphenylalanine+benserazide and bromocriptine also significantly improved the motor disability score and the hypolocomotion caused by MPTP treatment in a dose-dependent fashion. This amelioration was significant at 32+8 and 10-32 mg/kg, respectively, although bromocriptine induced severe emesis. Trihexiphenidyl also significantly improved the total motor disability score at doses of 10-32 mg/kg; however, while a significant increase in the total locomotor activity was observed at 10mg/kg, the drug induced ataxia-like behavior at 32 mg/kg. On the other hand, neither selegiline nor amantadine improved the total motor disability and hypolocomotion. These data substantiate the evidence that the novel adenosine antagonist ASP5854 exerts comparable anti-PD activity with existing anti-PD drugs, which indicates that ASP5854 might have potential to ameliorate motor deficits in PD.


Bioorganic & Medicinal Chemistry | 2014

Novel benzimidazole derivatives as phosphodiesterase 10A (PDE10A) inhibitors with improved metabolic stability.

Ayaka Chino; Naoyuki Masuda; Yasushi Amano; Kazuya Honbou; Takuma Mihara; Mayako Yamazaki; Masaki Tomishima

In this study, we report the identification of potent benzimidazoles as PDE10A inhibitors. We first identified imidazopyridine 1 as a high-throughput screening hit compound from an in-house library. Next, optimization of the imidazopyridine moiety to improve inhibitory activity gave imidazopyridinone 10b. Following further structure-activity relationship development by reducing lipophilicity and introducing substituents, we acquired 35, which exhibited both improved metabolic stability and reduced CYP3A4 time-dependent inhibition.


Bioorganic & Medicinal Chemistry | 2013

Design and synthesis of novel benzimidazole derivatives as phosphodiesterase 10A inhibitors with reduced CYP1A2 inhibition.

Wataru Hamaguchi; Naoyuki Masuda; Mai Isomura; Satoshi Miyamoto; Shigetoshi Kikuchi; Yasushi Amano; Kazuya Honbou; Takuma Mihara; Toshihiro Watanabe

A novel class of phosphodiesterase 10A (PDE10A) inhibitors with reduced CYP1A2 inhibition were designed and synthesized starting from 2-{[(1-phenyl-1H-benzimidazol-6-yl)oxy]methyl}quinoline (1). Introduction of an isopropyl group at the 2-position and a methoxy group at the 5-position of the benzimidazole ring of lead compound 1 resulted in the identification of 2-{[(2-isopropyl-5-methoxy-1-phenyl-1H-benzimidazol-6-yl)oxy]methyl}quinoline (25b), which exhibited potent PDE10A inhibitory activity with reduced CYP1A2 inhibitory activity compared to compound 1.


Journal of Pharmacology and Experimental Therapeutics | 2010

Norzotepine, a major metabolite of zotepine, exerts atypical antipsychotic-like and antidepressant-like actions through its potent inhibition of norepinephrine reuptake

Miwako Shobo; Yuji Kondo; Hiroshi Yamada; Takuma Mihara; Noriyuki Yamamoto; Masaaki Katsuoka; Katsuya Harada; Keni Ni; Nobuya Matsuoka

The antipsychotic drug zotepine [ZTP; 2-[(8-chlorodibenzo[b,f]thiepin-10-yl)oxy]-N,N-dimethylethan-1-amine] is known to have not only atypical antipsychotic effects but also antidepressive effects in schizophrenia patients. Norzotepine [norZTP; N-desmethylzotepine, 2-[(8-chlorodibenzo[b,f]thiepin-10-yl)oxy]-N-methylethan-1-amine] has been postulated to be a major metabolite of ZTP in humans. Here, we characterized norZTP through several in vitro studies and in animal models of psychosis, depression, and extrapyramidal symptoms (EPS) and compared the pharmacological profiles with those of ZTP. Although both compounds showed similar overall neurotransmitter receptor binding profiles, norZTP showed 7- to 16-fold more potent norepinephrine reuptake inhibition than ZTP. In a pharmacokinetic study, both ZTP and norZTP showed good brain permeability when administered individually in mice, although norZTP was not detected in either plasma or brain after intraperitoneal injection of ZTP. In the methamphetamine-induced hyperlocomotion test in mice, norZTP and ZTP showed similar antipsychotic-like effects at doses above 1 mg/kg i.p. In contrast, unlike ZTP, norZTP did not induce catalepsy up to 10 mg/kg i.p. norZTP significantly antagonized the hypothermia induced by reserpine [(3β,16β,17α,18β,20α)-11,17-dimethoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]yohimban-16-carboxylic acid methyl ester], suggesting in vivo inhibition of the norepinephrine transporter. In the forced-swim test, norZTP exerted an antidepressant-like effect at the effective doses for its antipsychotic action, whereas ZTP neither antagonized reserpine-induced hypothermia nor showed antidepressant-like effect. These results collectively demonstrate that norZTP exerts more potent inhibitory action than ZTP on norepinephrine transporters both in vitro and in vivo, presumably accounting for its antidepressant-like effect and low EPS propensity. Given that norZTP is the major metabolite observed in humans, norZTP may contribute to the unique clinical profiles of its mother compound, ZTP.


Bioorganic & Medicinal Chemistry | 2015

Synthesis, SAR study, and biological evaluation of novel quinoline derivatives as phosphodiesterase 10A inhibitors with reduced CYP3A4 inhibition

Wataru Hamaguchi; Naoyuki Masuda; Satoshi Miyamoto; Yasuhiro Shiina; Shigetoshi Kikuchi; Takuma Mihara; Hiroyuki Moriguchi; Hiroshi Fushiki; Yoshihiro Murakami; Yasushi Amano; Kazuya Honbou; Kouji Hattori

A novel class of phosphodiesterase 10A inhibitors with potent PDE10A inhibitory activity and reduced CYP3A4 inhibition was designed and synthesized starting from 2-[4-({[1-methyl-4-(pyridin-4-yl)-1H-pyrazol-3-yl]oxy}methyl)phenyl]quinoline (1). Replacement of pyridine ring of 1 with N-methyl pyridone ring drastically improved CYP3A4 inhibition, and further optimization of these quinoline analogues identified 1-methyl-5-(1-methyl-3-{[4-(quinolin-2-yl)phenoxy]methyl}-1H-pyrazol-4-yl)pyridin-2(1H)-one (42b), which showed potent PDE10A inhibitory activity and a good CYP3A4 inhibition profile. A PET study with (11)C-labeled 42b indicated that 42b exhibited good brain penetration and specifically accumulated in the rodent striatum. Further, oral administration of 42b dose-dependently attenuated phencyclidine-induced hyperlocomotion in mice with an ED50 value of 2.0mg/kg and improved visual-recognition memory impairment at 0.1 and 0.3mg/kg in mice novel object recognition test.


Bioorganic & Medicinal Chemistry | 2015

Addressing phototoxicity observed in a novel series of biaryl derivatives: discovery of potent, selective and orally active phosphodiesterase 10A inhibitor ASP9436.

Wataru Hamaguchi; Naoyuki Masuda; Satoshi Miyamoto; Shigetoshi Kikuchi; Fumie Narazaki; Yasuhiro Shiina; Ryushi Seo; Yasushi Amano; Takuma Mihara; Hiroyuki Moriguchi; Kouji Hattori

We synthesized several biaryl derivatives as PDE10A inhibitors to prevent phototoxicity of 2-[4-({[1-methyl-4-(pyridin-4-yl)-1H-pyrazol-3-yl]oxy}methyl)phenyl]quinoline (1) and found that the energy difference between the energy-minimized conformation and the coplanar conformation of the biaryl moiety helped facilitate prediction of the phototoxic potential of biaryl compounds. Replacement of the quinoline ring of 1 with N-methyl benzimidazole increased this energy difference and prevented phototoxicity in the 3T3 NRU test. Further optimization identified 1-methyl-5-(1-methyl-3-{[4-(1-methyl-1H-benzimidazol-4-yl)phenoxy]methyl}-1H-pyrazol-4-yl)pyridin-2(1H)-one (38b). Compound 38b exhibited good selectivity against other PDEs, and oral administration of 38b improved visual-recognition memory deficit in mice at doses of 0.001 and 0.003mg/kg in the novel object recognition test. ASP9436 (sesquiphosphate of 38b) may therefore be used for the treatment of schizophrenia with a low risk of phototoxicity.


European Journal of Pharmacology | 2006

Anxiolytic activity of a novel potent serotonin 5-HT2C receptor antagonist FR260010: a comparison with diazepam and buspirone.

Katsuya Harada; Masaki Aota; Tatsuo Inoue; Ritsuko Matsuda; Takuma Mihara; Takayuki Yamaji; Koji Ishibashi; Nobuya Matsuoka

Collaboration


Dive into the Takuma Mihara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge