Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takuma Nakajima is active.

Publication


Featured researches published by Takuma Nakajima.


Infection and Immunity | 2000

Novel Apoptosis-Inducing Activity in Bacteroides forsythus: a Comparative Study with Three Serotypes of Actinobacillus actinomycetemcomitans

Shinichi Arakawa; Takuma Nakajima; Hiroaki Ishikura; Shizuko Ichinose; Isao Ishikawa; Nobuo Tsuchida

ABSTRACT Bacteroides forsythus, which has been reported to be associated with periodontitis but has not been recognized as a key pathogen, was found to induce cytolytic activity against HL-60 and other human leukemic cells. This cytolytic activity was demonstrated according to three different criteria: (i) loss of both mitochondrial membrane potential and membrane integrity in cells treated with bacterial extracts and then with Rh123 and propidium iodide, respectively, as demonstrated by flow cytometry; (ii) damage to cytoplasmic membrane, as revealed by scanning electron microscopy (SEM); and (iii) DNA ladder formation and activation of caspase-3. These results indicate that B. forsythus produced an apoptosis-inducing factor(s) found to be composed of protein as judged by heat and trypsin sensitivity. In addition to extracts from B. forsythus, the culture supernatant of this bacterium has the ability to induce a cytolytic effect against peripheral white blood cells, especially lymphocytes. For comparison with B. forsythus, the same analyses were applied to two strains with different serotypes ofActinobacillus actinomycetemcomitans, serotypes a (ATCC 43717) and c (ATCC 43719), in addition to previously reported apoptosis-inducing serotype b (ATCC 43718), which was used as a positive control. The strains of A. actinomycetemcomitansserotypes a and b induced apoptosis in HL-60 cells as judged by the above three criteria but to a slightly lesser extent than did B. forsythus, while the serotype c strain produced apoptosis to a negligible extent. Detailed SEM images showed that the A. actinomycetemcomitans serotype a strain induced large-pore formation and the serotype b strain produced small pores with typical blebbing, while B. forsythus induced severe membrane ruffling. Further DNA ladder formation and caspase-3 activation were observed in the serotype a and b strains but not in the serotype c strain. The present paper is the first report of a protein factor(s) from B. forsythus and the A. actinomycetemcomitans serotype a strain which induces apoptotic cell death.


Journal of Biological Chemistry | 1996

Degradation of topoisomerase IIalpha during adenovirus E1A-induced apoptosis is mediated by the activation of the ubiquitin proteolysis system.

Takuma Nakajima; Kenichi Morita; Naoto Ohi; Takao Arai; Naohito Nozaki; Akihiko Kikuchi; Fumio Osaka; Fumiaki Yamao; Kinichiro Oda

The human epithermoid carcinoma-derived cell line MA1, established by introduction of the adenovirus E1A 12 S cDNA linked to the mouse mammary tumor virus long terminal repeat, elicits apoptosis after induction of E1A12S in response to dexamethasone. The level of topoisomerase IIα begins to decrease steeply within 36 h preceding the onset of DNA fragmentation, whereas its mRNA level is unchanged (Nakajima, T., Ohi, N., Arai, T., Nozaki, N., Kikuchi, A., and Oda, K. (1995) Oncogene 10, 651-662). Topoisomerase IIα prepared by immunoprecipitation or extraction of the nuclear matrix was degraded much more efficiently in the S10 extract prepared from MA1 cells treated with dexamethasone for 42 h (the 42-h extract) than in the extract from untreated MA1 cells (the 0-h extract) in an ATP- and ubiquitin-dependent manner. The proteolytic activity for degradation of topoisomerase IIα was suppressed specifically by inhibitors for the proteasome and was much reduced in the 42-h extract prepared from MA1-derivative cell lines expressing E1B19k or Bcl-2. The proteolytic activity was lost after fractionation of the 42-h S10 extract into the S70 and P70 fractions by centrifugation at 70,000 × g for 6 h but partially recovered when these fractions were combined. Polyubiquitinated forms of topoisomerase IIα could be detected by incubating it in the S70 or S100 extract, which lacks most of the proteasome activity. The ubiquitination activity in S70 prepared from the 42-h extract was 4- to 5-fold higher than that prepared from the 0-h extract. These results suggest that a component(s) in the ubiquitin proteolysis pathway, responsible for ubiquitination and degradation of topoisomerase IIα, is activated or induced during the latent phase of E1A-induced apoptosis.


Oncogene | 1998

A novel E2F binding protein with Myc-type HLH motif stimulates E2F-dependent transcription by forming a heterodimer

Mitsuhiro Suzuki; Satoshi Okuyama; Satoru Okamoto; Kenna Shirasuna; Takuma Nakajima; Takahisa Hachiya; Hiroshi Nojima; Souei Sekiya; Kinichiro Oda

The human embryonal carcinoma cells NEC14 can be induced to differentiate morphologically by the addition of 10−2 M N, N′-hexamethylene-bis-acetamide and cease to grow in several days. Transcription factors of the E2F/DP family have been shown to be closely related to the regulation of cell proliferation. To analyse cellular proteins which interact with E2F in NEC14 cells, cDNA clones encoding E2F binding proteins were isolated from a λZAP II NEC14 cell library with the 32P-labeled GST (Glutathione S-transferase)-E2F-1 fusion protein as a probe. One of the clones encodes E2FBP1 which has the helix–loop–helix (HLH) motif, but lacks the basic domain and the zipper structure usually found at N- and C-terminal sides to the HLH motif, respectively. The arrangement of amino acids in the helix 1 and helix 2 regions is quite similar to those of Mxi and Mad, but different from those of E2F-1 and DP-1. Western blot analysis of the immunoprecipitates prepared with anti-E2FBP1 antibody showed that E2FBP1 associates with both E2F-1 and DP-1 in vivo. E2FBP1 alone has no DNA binding activity, but bind to the E2F site through heterodimerization with E2F-1 but not with DP-1. Although E2FBP1 lacks the transactivation domain, it stimulates E2F site-dependent transcription in cooperation with E2F-1.


Cell Death & Differentiation | 1999

A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region.

Naoto Ohi; Akinori Tokunaga; Haruki Tsunoda; Kazuhiro Nakano; Keiko Haraguchi; Kinichiro Oda; Noboru Motoyama; Takuma Nakajima

The adenovirus E1B19K protein inhibits apoptosis induced by E1A and other divergent signals. The cellular proteins that interact with E1B19K have been analyzed by isolating cDNA clones by the yeast two hybrid system. One of these clones encodes B5 which consists of 219 amino acid residues and contains the putative BH3 and transmembrane regions. B5 binds strongly to Nip3 and itself, weakly to E1B19K, but not to Bcl-2 and localizes in nuclear envelope, endoplasmic reticulum and mitochondria. B5 has sequence homology with Nip3 in the middle and C-terminal regions, but not in the N-terminal region. Unlike other E1B19K binding BH3 proteins so far characterized, B5 does not induce apoptosis, but inhibits apoptosis induced by Nip3. However the deletion mutant B5Δ1-31 lacking the N-terminus does induce apoptosis, although weaker than does Nip3, suggesting that the N-terminal region is masking the apoptosis-inducing capacity of B5.


Molecular and Cellular Biology | 1995

G10BP, an E1A-inducible negative regulator of Sp1, represses transcription of the rat fibronectin gene.

Mitsuhiro Suzuki; C Kuroda; Eri Oda; S Tsunoda; Takahisa Nakamura; Takuma Nakajima; Kinichiro Oda

Downregulation of the fibronectin (FN) gene in a rat 3Y1 derivative cell line, XhoC, transformed by the adenovirus E1A and E1B genes seems to be caused by the induction of a negative regulator, G10BP, which binds to three G-rich sequences in the promoter (T. Nakamura, T. Nakajima, S. Tsunoda, S. Nakada, K. Oda, H. Tsurui, and A. Wada, J. Virol. 66:6436-6450, 1992). These are the G10 stretch and two GC boxes consisting of the G10 stretch with one internal C residue insertion. The recognition sequences of G10BP and Sp1 (GGGCGG) overlap in these GC boxes. To analyze the mechanism of the downregulation, G10BP was purified by DNA affinity chromatography, and its molecular mass was estimated to be about 30 kDa. The promoter was modified by substituting the sequence GGGG with ATCC or CTTA in these G-rich sequences, leaving the Sp1 motif intact, and by replacing the Sp1 motif by the T stretch. Transcription of FN promoter-chloramphenicol acetyltransferase fusion genes carrying the base substitution in one or more of these G-rich sequences both in vivo and in vitro revealed that the base substitution in any G-rich sequence results in reduction of promoter activity, although the downstream GC box (GCd) plays a primary role. The addition of G10BP severely inhibited the activities of the FN promoters carrying the wild-type GCd in vitro, while the promoters carrying the mutant GCd were unaffected. The binding affinity of G10BP and Sp1 to each of the G-rich sequences, analyzed by gel shift assays, indicated that G10BP binds strongly to the GCd, moderately to the G10 stretch, and weakly to GCu, while Sp1 binds strongly to GCu, moderately to GCd, and weakly to the G10 stretch. Sp1 binding to GCd and the G10 stretch was inhibited by G10BP, while binding to GCu was unaffected. These results indicate that FN gene transcription is inhibited in XhoC cells primarily by exclusion of Sp1 binding to GCd by G10BP and that G10BP is a new class of Sp1 negative regulator.


Journal of Biological Chemistry | 1998

STABILIZATION OF P53 BY ADENOVIRUS E1A OCCURS THROUGH ITS AMINO-TERMINAL REGION BY MODIFICATION OF THE UBIQUITIN-PROTEASOME PATHWAY

Takuma Nakajima; Kenichi Morita; Haruki Tsunoda; Shinobu Imajoh-Ohmi; Hirofumi Tanaka; Hideyo Yasuda; Kinichiro Oda

The human epidermoid carcinoma-derived cell line MA1, established by introduction of the adenovirus E1A 12 S cDNA linked to the hormone-inducible promoter, elicits apoptosis after induction of E1A12 S in response to dexamethasone. E1A expression caused accumulation of wild type p53 more than 10-fold within 24 h after dexamethasone treatment. The cell lines that express E1A mutants containing a deletion either in the amino terminus or the conserved region 1 were unable to accumulate p53. p53 accumulated was degraded efficiently in vitro in the S10–0 extract (S10–0) prepared from MA1 cells in an ATP and ubiquitin-dependent manner, but not in S10–24 prepared after treatment with dexamethasone for 24 h. The p53 polyubiquitination activity in S100–0 was calcium-dependent and reduced greatly in S100–24. Ubiquitin affinity chromatography revealed that p53 ubiquitination activity in eluates thought to contain ubiquitin-conjugating enzymes decreased greatly in S100–24 as compared with S100–0. The accumulation of p53 was accompanied by the increase in the level of Mdm2, which has been shown to degrade p53 through binding to it. The high p53 level, however, was maintained until the late stage of the apoptotic process. These results indicate that the stabilization of p53 by E1A occurs through modification of a ubiquitin-specific enzyme(s) in the ubiquitin-proteasome pathway.


Molecular and Cellular Biology | 1998

INDUCTION OF SP1 IN DIFFERENTIATING HUMAN EMBRYONAL CARCINOMA CELLS TRIGGERS TRANSCRIPTION OF THE FIBRONECTIN GENE

Mitsuhiro Suzuki; Eri Oda; Takuma Nakajima; Souei Sekiya; Kinichiro Oda

ABSTRACT Cells of the human embryonal carcinoma line NEC14 proliferate as densely packed clusters consisting of small, polygonal stem cells and do not express a detectable level of fibronectin (FN). Upon induction of differentiation by treatment withN,N′-hexamethylene bisacetamide (HMBA), the level of FN mRNA increased steeply within 24 h and FN began to be accumulated, along with the organization of actin filaments in the cells. The FN promoter elements required for the activation were analyzed in reference to a cluster of GC boxes by using the chloramphenicol acetyltransferase (CAT) gene fused to 5′ sequential-deletion derivatives of the promoter and promoters carrying base substitutions in the GC boxes. Among four GC boxes, GC boxes 2 and 3 had the greatest effect on promoter activation, and base substitutions in these GC boxes resulted in 80% reduction in promoter activity. The pattern of DNA-protein complex formation with these GC boxes changed drastically after induction of differentiation. The extract prepared from undifferentiated NEC14 cells formed fast-migrating complexes (UnD complexes), while the extract prepared from NEC14 cells treated with HMBA for 24 h formed slow-migrating complexes containing Sp1. Both complexes were formed predominantly with GC box 2. Base substitutions within the GC boxes completely abolished the formation of both UnD and Sp1 complexes. Consistent with these changes, the Sp1 level increased steeply within 24 h. Induction of Sp1 expression in NEC14 cells effectively stimulated the promoter activity of the transfected FN promoter-CAT constructs. These results indicate that activation of the FN promoter in differentiating NEC14 cells occurs by the steep induction of Sp1, which prevents an undifferentiated cell factor from binding to the Sp1 sites.


Oncogene | 1999

The adenovirus E1A domains required for induction of DNA rereplication in G2/M arrested cells coincide with those required for apoptosis.

Mika Yageta; Haruki Tsunoda; Toshinori Yamanaka; Takuma Nakajima; Yasuhiro Tomooka; Nobuo Tsuchida; Kinichiro Oda

Induction of apoptosis by adenovirus E1A in rodent cells is stimulated by wild type (wt) p53 but completely suppressed by mutated p53. The suppression is overcome by coexpression with Id proteins (Ids). The cells expressing E1A and Ids undergo apoptosis after accumulation in S phase, suggesting that S phase events are perturbed by E1A and Ids. The E1A domains required for induction of apoptosis, analysed by transfection with expression vectors for E1A, Ids and their mutants, followed by flow cytometry, reside in N-terminal (positions 17 – 38), CR1 and CR2 regions. Interaction of E1A with Ids requires the N-terminal and CR1 regions. The cyclin D1 promoter activity in S phase was reduced severely by E1A and this reduction is caused through CR1 and CR2 regions required for interaction with pRB. Analysis of DNA synthesis in G2/M arrested cells indicated that E1A is capable of inducing >4 N cells and this E1A-mediated DNA rereplication is enhanced by coexpression with Id-1H. The E1A domains required for induction of DNA rereplication coincide with those required for apoptosis.


Oncogene | 2002

P130 and its truncated form mediate p53-induced cell cycle arrest inRb −/− Saos2 cells

Chongfeng Gao; Shuo Ren; Jingfei Wang; Shengliang Zhang; Feng Jin; Takuma Nakajima; Masa-Aki Ikeda; Nobuo Tsuchida

In the present study, we investigate the mechanism of how p53 induces growth arrest in Rb-defective Saos2 cells that express temperature-sensitive mutant p53 (ts p53). The activation of p53 at a permissive temperature (32.5°C) induces the cell cycle arrest at both the G1 and G2 stages. The induction of several p53-responsive genes as well as a small form of p130 (S-p130) was detected upon p53 activation. S-p130 retained the functions as a pocket protein and was dominant over p130 at the protein level after 36 h at 32.5°C. A canonical p53 binding site was identified in intron 4 of p130. Furthermore, a novel p53-inducible transcript containing a partial intron 4 sequence downstream of the p53 binding site and exon 5 of p130 was detected by RT–PCR, suggesting S-p130 is induced by p53 at transcriptional level. The results from gel shift assay and immunoprecipitation showed that S-p130 as well as p130 formed complexes with both E2F1 and E2F4 at a permissive temperature. Moreover, the transient expression of E1A (12S) and E2F1 effectively abrogated p53-induced cell cycle arrest. These results strongly suggested that p130 and its truncated form might substitute Rb in mediating p53-induced cell cycle arrest in Rb−/− Saos2 cells.


Molecular and Cellular Biology | 1998

Cloning and Characterization of a GC-Box Binding Protein, G10BP-1, Responsible for Repression of the Rat Fibronectin Gene

Eri Oda; Kenna Shirasuna; Mitsuhiro Suzuki; Kuniko Nakano; Takuma Nakajima; Kinichiro Oda

ABSTRACT Fibronectin (FN) is an extracellular matrix protein that connects the extracellular matrix to intracellular cortical actin filaments through binding to its cell surface receptor, α5β1, a member of the integrin superfamily. The expression level of FN is reduced in most tumor cells, facilitating their anchorage-independent growth by still unclarified mechanisms. The cDNA clone encoding G-rich sequence binding protein G10BP-1, which is responsible for repression of the rat FN gene, was isolated by using a yeast one-hybrid screen with the G10 stretch inserted upstream of the HIS3 and lacZgene minimal promoters. G10BP-1 comprises 385 amino acids and contains two basic regions and a putative zipper structure. It has the same specificity of binding to three G-rich sequences in the FN promoter and the same size as the G10BP previously identified in adenovirus E1A- and E1B-transformed rat cells. Expression of G10BP-1 is cell cycle regulated; the level was almost undetectable in quiescent rat 3Y1 cells but increased steeply after growth stimulation by serum, reaching a maximum in late G1. Expression of FN mRNA is inversely correlated with G10BP-1 expression, and the level decreased steeply during G1-to-S progression. This down regulation was strictly dependent on the downstream GC box (GCd), and base substitutions within GCd abolished the sensitivity of the promoter to G10BP-1. In contrast, the level of Sp1, which competes with G10BP for binding to the G-rich sequences, was constant throughout the cell cycle, suggesting that the concentration of G10BP-1 relative to that of Sp1 determines the expression level of the FN gene. Preparation of glutathione S-transferase pulldowns of native proteins from the cell extracts containing exogenously or endogenously expressed G10BP-1, followed by Western blot analysis, showed that G10BP-1 forms homodimers through its basic-zipper structure.

Collaboration


Dive into the Takuma Nakajima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuo Tsuchida

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge