Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takumi Koshiba is active.

Publication


Featured researches published by Takumi Koshiba.


Science Signaling | 2009

Mitofusin 2 Inhibits Mitochondrial Antiviral Signaling

Kai Yasukawa; Hiroyuki Oshiumi; Makoto Takeda; Naotada Ishihara; Yusuke Yanagi; Tsukasa Seya; Shun Ichiro Kawabata; Takumi Koshiba

A protein that mediates mitochondrial fusion also suppresses innate immune responses to viral infection. Fusing Roles Cells use a number of different receptors to detect and respond to various pathogen-associated molecular patterns. For the detection of cytosolic viruses, cells use retinoic acid–inducible gene I (RIG-I) and melanoma differentiation–associated gene 5 (MDA-5), two sensors of viral RNA. Upon binding to nucleic acid, these molecules bind to the adaptor protein MAVS, which is localized at the outer membrane of the mitochondrion. This interaction leads to the production of type I interferon (IFN) as part of the innate immune response to the virus. Yasukawa et al. searched for other outer mitochondrial membrane proteins that might modulate this response and found that mitofusin 2, a guanosine triphosphatase well-characterized for its role in mediating mitochondrial fusion, bound to MAVS and inhibited the activation of the transcription factors needed to trigger the production of IFN. Together, these data suggest that mitofusin 2 acts as an endogenous inhibitor of the antiviral response by inhibiting the interaction between MAVS and either RIG-I or MDA-5. The innate immune response to viral infection involves the activation of multiple signaling steps that culminate in the production of type I interferons (IFNs). Mitochondrial antiviral signaling (MAVS), a mitochondrial outer membrane adaptor protein, plays an important role in this process. Here, we report that mitofusin 2 (Mfn2), a mediator of mitochondrial fusion, interacts with MAVS to modulate antiviral immunity. Overexpression of Mfn2 resulted in the inhibition of retinoic acid–inducible gene I (RIG-I) and melanoma differentiation–associated gene 5 (MDA-5), two cytosolic sensors of viral RNA, as well as of MAVS-mediated activation of the transcription factors interferon regulatory factor 3 (IRF-3) and nuclear factor κB (NF-κB). In contrast, loss of endogenous Mfn2 enhanced virus-induced production of IFN-β and thereby decreased viral replication. Structure-function analysis revealed that Mfn2 interacted with the carboxyl-terminal region of MAVS through a heptad repeat region, providing a structural perspective on the regulation of the mitochondrial antiviral response. Our results suggest that Mfn2 acts as an inhibitor of antiviral signaling, a function that may be distinct from its role in mitochondrial dynamics.


Science Signaling | 2011

Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling.

Takumi Koshiba; Kai Yasukawa; Yusuke Yanagi; Shun Ichiro Kawabata

The contribution of mitochondria to antiviral immune responses extends beyond their role as a platform for antiviral signaling molecules. Antiviral Mitochondrial Action Mitochondria are the energy generators of the cell, but they also act as platforms upon which complexes of proteins respond to RNA-containing viruses within the cytosol. Through genetic and pharmacological means, Koshiba et al. present evidence that suggests that the contribution of mitochondria to these antiviral responses is not as passive as originally thought. Indeed, their data suggest that successful resistance to viral infections depends on maintenance of the internal physiological functions of mitochondria coupled with the functions of the external protein complexes. Mitochondria, dynamic organelles that undergo cycles of fusion and fission, are the powerhouses of eukaryotic cells and are also involved in cellular innate antiviral immunity in mammals. Mitochondrial antiviral immunity depends on activation of the cytoplasmic retinoic acid–inducible gene I (RIG-I)–like receptor (RLR) signaling pathway and the participation of a mitochondrial outer membrane adaptor protein called MAVS (mitochondrial antiviral signaling). We found that cells that lack the ability to undergo mitochondrial fusion as a result of targeted deletion of both mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) exhibited impaired induction of interferons and proinflammatory cytokines in response to viral infection, resulting in increased viral replication. In contrast, cells with null mutations in either Mfn1 or Mfn2 retained their RLR-induced antiviral responses. We also found that a reduced mitochondrial membrane potential (ΔΨm) correlated with the reduced antiviral response. The dissipation in ΔΨm did not affect the activation of the transcription factor interferon regulatory factor 3 downstream of MAVS, which suggests that ΔΨm and MAVS are coupled at the same stage in the RLR signaling pathway. Our results provide evidence that the physiological function of mitochondria plays a key role in innate antiviral immunity.


Journal of Biological Chemistry | 2003

The Prefusogenic Intermediate of HIV-1 gp41 Contains Exposed C-peptide Regions

Takumi Koshiba; David C. Chan

The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein is composed of a complex between the surface subunit gp120, which binds to cellular receptors, and the transmembrane subunit gp41. Upon activation of the envelope glycoprotein by cellular receptors, gp41 undergoes conformational changes that mediate fusion of the viral and cellular membranes. Prior to formation of a fusogenic “trimer-of-hairpins” structure, gp41 transiently adopts a prefusogenic conformation whose structural features are poorly understood. An important approach toward understanding structural conformations of gp41 during HIV-1 entry has been to analyze the structural targets of gp41 inhibitors. We have constructed epitope-tagged versions of 5-Helix, a designed protein that binds to the C-peptide region of gp41 and inhibits HIV-1 membrane fusion. Using these 5-Helix variants, we examined which conformation of gp41 is the target of 5-Helix. We find that although 5-Helix binds poorly to native gp41, it binds strongly to gp41 activated by interaction of the envelope protein with either soluble CD4 or membrane-bound cellular receptors. This preferential interaction with activated gp41 results in the accumulation of 5-Helix on the surface of activated cells. These results strongly suggest that the gp41 prefusogenic intermediate is the target of 5-Helix and that this intermediate has a remarkably “open” structure, with exposed C-peptide regions. These results provide important structural information about this intermediate that should facilitate the development of HIV-1 entry inhibitors and may lead to new vaccine strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection

Takeshi Ichinohe; Tatsuya Yamazaki; Takumi Koshiba; Yusuke Yanagi

Significance Mitochondria play pivotal roles not only in the energy production, apoptosis, and calcium storages, but also in innate antiviral immunity. Mitochondrial antiviral signaling expressed on the outer membrane of mitochondria is essential for intracellular viral RNA-mediated induction of type I interferon. In addition, damaged mitochondria generate reactive oxygen species required for nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome-dependent inflammatory responses. Here, we demonstrate that mitochondrial membrane potential-dependent association between NLRP3 and mitochondrial outer membrane protein mitofusin 2, a key regulator of mitochondrial fusion, is required for the full activation of the NLRP3 inflammasome after infection with RNA viruses. Our results highlight the importance of mitochondria as a platform of NLRP3 inflammasome activation. Nod-like receptor family, pyrin domain-containing 3 (NLRP3), is involved in the early stages of the inflammatory response by sensing cellular damage or distress due to viral or bacterial infection. Activation of NLRP3 triggers its assembly into a multimolecular protein complex, termed “NLRP3 inflammasome.” This event leads to the activation of the downstream molecule caspase-1 that cleaves the precursor forms of proinflammatory cytokines, such as interleukin 1 beta (IL-1β) and IL-18, and initiates the immune response. Recent studies indicate that the reactive oxygen species produced by mitochondrial respiration is critical for the activation of the NLRP3 inflammasome by monosodium urate, alum, and ATP. However, the precise mechanism by which RNA viruses activate the NLRP3 inflammasome is not well understood. Here, we show that loss of mitochondrial membrane potential [ΔΨ(m)] dramatically reduced IL-1β secretion after infection with influenza, measles, or encephalomyocarditis virus (EMCV). Reduced IL-1β secretion was also observed following overexpression of the mitochondrial inner membrane protein, uncoupling protein-2, which induces mitochondrial proton leakage and dissipates ΔΨ(m). ΔΨ(m) was required for association between the NLRP3 and mitofusin 2, a mediator of mitochondrial fusion, after infection with influenza virus or EMCV. Importantly, the knockdown of mitofusin 2 significantly reduced the secretion of IL-1β after infection with influenza virus or EMCV. Our results provide insight into the roles of mitochondria in NLRP3 inflammasome activation.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease.

Tammy T. Nguyen; Sang S. Oh; David Weaver; Agnieszka Lewandowska; Dane Maxfield; Max Hinderk Schuler; Nathan K. Smith; Jane L. Macfarlane; Gerald W. Saunders; Cheryl A. Palmer; Valentina Debattisti; Takumi Koshiba; Stefan M. Pulst; Eva L. Feldman; György Hajnóczky; Janet M. Shaw

Significance This report probes the physiological roles of mammalian mitochondrial Rho 1 (Miro1), a calcium-binding, membrane-anchored GTPase necessary for mitochondrial motility on microtubules. Using two new mouse models and primary cells, the study demonstrates a specific role for Miro1 in upper motor neuron development and retrograde transport of axonal mitochondria. Unexpectedly, Miro1 is not essential for calcium-regulated mitochondrial movement, mitochondrial-mediated calcium buffering, or maintenance of mitochondrial respiratory activity. Nevertheless, a neuron-specific Miro1 KO mouse model displays physical hallmarks of neurological disease in the brainstem and spinal cord and develops rapidly progressing upper motor neuron disease symptoms culminating in death after approximately 4 wk. These studies demonstrate that defects in mitochondrial motility and distribution alone are sufficient to cause neurological disease. Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease.


Nature Communications | 2014

Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity

T. Yoshizumi; Takeshi Ichinohe; Osamu Sasaki; Hidenori Otera; Shun Ichiro Kawabata; Katsuyoshi Mihara; Takumi Koshiba

Mitochondria contribute to cellular innate immunity against RNA viruses. Mitochondrial-mediated innate immunity is regulated by signalling molecules that are recruited to the mitochondrial membrane, and depends on the mitochondrial inner membrane potential (Δψm). Here we examine the physiological relevance of Δψm and the mitochondrial-associating influenza A viral protein PB1-F2 in innate immunity. When expressed in host cells, PB1-F2 completely translocates into the mitochondrial inner membrane space via Tom40 channels, and its accumulation accelerates mitochondrial fragmentation due to reduced Δψm. By contrast, PB1-F2 variants lacking a C-terminal polypeptide, which is frequently found in low pathogenic subtypes, do not affect mitochondrial function. PB1-F2-mediated attenuation of Δψm suppresses the RIG-I signalling pathway and activation of NLRP3 inflammasomes. PB1-F2 translocation into mitochondria strongly correlates with impaired cellular innate immunity, making this translocation event a potential therapeutic target.


Journal of Immunology | 2008

Factor C Acts as a Lipopolysaccharide-Responsive C3 Convertase in Horseshoe Crab Complement Activation

Shigeru Ariki; Shusaku Takahara; Toshio Shibata; Takaaki Fukuoka; Aya Ozaki; Yuichi Endo; Teizo Fujita; Takumi Koshiba; Shun Ichiro Kawabata

The complement system in vertebrates plays an important role in host defense against and clearance of invading microbes, in which complement component C3 plays an essential role in the opsonization of pathogens, whereas the molecular mechanism underlying C3 activation in invertebrates remains unknown. In an effort to understand the molecular activation mechanism of invertebrate C3, we isolated and characterized an ortholog of C3 (designated TtC3) from the horseshoe crab Tachypleus tridentatus. Flow cytometric analysis using an Ab against TtC3 revealed that the horseshoe crab complement system opsonizes both Gram-negative and Gram-positive bacteria. Evaluation of the ability of various pathogen-associated molecular patterns to promote the proteolytic conversion of TtC3 to TtC3b in hemocyanin-depleted plasma indicated that LPS, but not zymosan, peptidoglycan, or laminarin, strongly induces this conversion, highlighting the selective response of the complement system to LPS stimulation. Although originally characterized as an LPS-sensitive initiator of hemolymph coagulation stored within hemocytes, we identified factor C in hemolymph plasma. An anti-factor C Ab inhibited various LPS-induced phenomena, including plasma amidase activity, the proteolytic activation of TtC3, and the deposition of TtC3b on the surface of Gram-negative bacteria. Moreover, activated factor C present on the surface of Gram-negative bacteria directly catalyzed the proteolytic conversion of the purified TtC3, thereby promoting TtC3b deposition. We conclude that factor C acts as an LPS-responsive C3 convertase on the surface of invading Gram-negative bacteria in the initial phase of horseshoe crab complement activation.


Journal of Biological Chemistry | 2006

A Structural Perspective on the Interaction between Lipopolysaccharide and Factor C, a Receptor Involved in Recognition of Gram-negative Bacteria

Takumi Koshiba; Tomoyuki Hashii; Shun Ichiro Kawabata

The recognition of broadly conserved microorganism components known as pathogen-associated molecular patterns is an essential step in initiating the innate immune response. In the horseshoe crab, stimulation of hemocytes with lipopolysaccharide (LPS) causes the activation of its innate immune response, and Factor C, a serine protease zymogen, plays an important role in this event. Here, we report that Factor C associates with LPS on the hemocyte surface and directly recognizes Gram-negative bacteria. Structure-function analyses reveal that the LPS binding site is present in the N-terminal cysteine-rich (Cys-rich) region of the molecule and that it contains a tripeptide sequence consisting of an aromatic residue flanked by two basic residues that is conserved in other mammalian LPS-recognizing proteins. Moreover, we have demonstrated that the Cys-rich region specifically binds to LPS on Gram-negative bacteria and that mutations in the tripeptide motif abrogate its association with both LPS and Gram-negative bacteria, underscoring the importance of the tripeptide in LPS interaction. Although the innate immune response to LPS in the horseshoe crab is distinct from that of mammals, it appears to rely on structural features that are conserved among LPS-recognizing proteins from diverse species.


PLOS ONE | 2010

Protein crosslinking by transglutaminase controls cuticle morphogenesis in Drosophila.

Toshio Shibata; Shigeru Ariki; Naoaki Shinzawa; Ryuta Miyaji; Haruka Suyama; Miyuki Sako; Nobuyuki Inomata; Takumi Koshiba; Hirotaka Kanuka; Shun Ichiro Kawabata

Transglutaminase (TG) plays important and diverse roles in mammals, such as blood coagulation and formation of the skin barrier, by catalyzing protein crosslinking. In invertebrates, TG is known to be involved in immobilization of invading pathogens at sites of injury. Here we demonstrate that Drosophila TG is an important enzyme for cuticle morphogenesis. Although TG activity was undetectable before the second instar larval stage, it dramatically increased in the third instar larval stage. RNA interference (RNAi) of the TG gene caused a pupal semi-lethal phenotype and abnormal morphology. Furthermore, TG-RNAi flies showed a significantly shorter life span than their counterparts, and approximately 90% of flies died within 30 days after eclosion. Stage-specific TG-RNAi before the third instar larval stage resulted in cuticle abnormality, but the TG-RNAi after the late pupal stage did not, indicating that TG plays a key role at or before the early pupal stage. Immediately following eclosion, acid-extractable protein from wild-type wings was nearly all converted to non-extractable protein due to wing maturation, whereas several proteins remained acid-extractable in the mature wings of TG-RNAi flies. We identified four proteins—two cuticular chitin-binding proteins, larval serum protein 2, and a putative C-type lectin—as TG substrates. RNAi of their corresponding genes caused a lethal phenotype or cuticle abnormality. Our results indicate that TG-dependent protein crosslinking in Drosophila plays a key role in cuticle morphogenesis and sclerotization.


Journal of Biological Chemistry | 2011

Structure-Function Analysis of the Yeast Mitochondrial Rho GTPase, Gem1p IMPLICATIONS FOR MITOCHONDRIAL INHERITANCE

Takumi Koshiba; Holly A. Holman; Kenji Kubara; Kai Yasukawa; Shun Ichiro Kawabata; Koji Okamoto; Jane L. Macfarlane; Janet M. Shaw

Mitochondria undergo continuous cycles of homotypic fusion and fission, which play an important role in controlling organelle morphology, copy number, and mitochondrial DNA maintenance. Because mitochondria cannot be generated de novo, the motility and distribution of these organelles are essential for their inheritance by daughter cells during division. Mitochondrial Rho (Miro) GTPases are outer mitochondrial membrane proteins with two GTPase domains and two EF-hand motifs, which act as receptors to regulate mitochondrial motility and inheritance. Here we report that although all of these domains are biochemically active, only the GTPase domains are required for the mitochondrial inheritance function of Gem1p (the yeast Miro ortholog). Mutations in either of the Gem1p GTPase domains completely abrogated mitochondrial inheritance, although the mutant proteins retained half the GTPase activity of the wild-type protein. Although mitochondrial inheritance was not dependent upon Ca2+ binding by the two EF-hands of Gem1p, a functional N-terminal EF-hand I motif was critical for stable expression of Gem1p in vivo. Our results suggest that basic features of Miro protein function are conserved from yeast to humans, despite differences in the cellular machinery mediating mitochondrial distribution in these organisms.

Collaboration


Dive into the Takumi Koshiba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kunihiro Kuwajima

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge