Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takumi Suzuki is active.

Publication


Featured researches published by Takumi Suzuki.


Developmental Biology | 2013

A temporal mechanism that produces neuronal diversity in the Drosophila visual center.

Takumi Suzuki; Masako Kaido; Rie Takayama; Makoto Sato

The brain consists of various types of neurons that are generated from neural stem cells; however, the mechanisms underlying neuronal diversity remain uncertain. A recent study demonstrated that the medulla, the largest component of the Drosophila optic lobe, is a suitable model system for brain development because it shares structural features with the mammalian brain and consists of a moderate number and various types of neurons. The concentric zones in the medulla primordium that are characterized by the expression of four transcription factors, including Homothorax (Hth), Brain-specific homeobox (Bsh), Runt (Run) and Drifter (Drf), correspond to types of medulla neurons. Here, we examine the mechanisms that temporally determine the neuronal types in the medulla primordium. For this purpose, we searched for transcription factors that are transiently expressed in a subset of medulla neuroblasts (NBs, neuronal stem cell-like neural precursor cells) and identified five candidates (Hth, Klumpfuss (Klu), Eyeless (Ey), Sloppy paired (Slp) and Dichaete (D)). The results of genetic experiments at least explain the temporal transition of the transcription factor expression in NBs in the order of Ey, Slp and D. Our results also suggest that expression of Hth, Klu and Ey in NBs trigger the production of Hth/Bsh-, Run- and Drf-positive neurons, respectively. These results suggest that medulla neuron types are specified in a birth order-dependent manner by the action of temporal transcription factors that are sequentially expressed in NBs.


Developmental Biology | 2013

Waves of differentiation in the fly visual system.

Makoto Sato; Takumi Suzuki; Yasuhiro Nakai

Sequential progression of differentiation in a tissue or in multiple tissues in a synchronized manner plays important roles in development. Such waves of differentiation are especially important in the development of the Drosophila visual system, which is composed of the retina and the optic lobe of the brain. All of the components of the fly visual system are topographically connected, and each ommatidial unit in the retina corresponds to a columnar unit in the optic lobe, which is composed of lamina, medulla, lobula and lobula plate. In the developing retina, the wave of differentiation follows the morphogenetic furrow, which progresses in a posterior-to-anterior direction. At the same time, differentiation of the lamina progresses in the same direction, behind the lamina furrow. This is not just a coincidence: differentiated photoreceptor neurons in the retina sequentially send axons to the developing lamina and trigger differentiation of lamina neurons to ensure the progression of the lamina furrow just like the furrow in the retina. Similarly, development of the medulla accompanies a wave of differentiation called the proneural wave. Thus, the waves of differentiation play important roles in establishing topographic connections throughout the fly visual system. In this article, we review how neuronal differentiation and connectivity are orchestrated in the fly visual system by multiple waves of differentiation.


Development Growth & Differentiation | 2014

Neurogenesis and neuronal circuit formation in the Drosophila visual center

Takumi Suzuki; Makoto Sato

The Drosophila optic lobe is composed of a wide variety of neurons that form laminar structures and columnar units. The fly optic lobe shares structural features with the mammalian brain, and fly genetics allow precise genetic manipulations. Thus, the Drosophila visual center is an excellent model for studying the mechanisms underlying the establishment of a functional neuronal circuit during brain development. However, little is understood about the developmental mechanisms that produce neuronal diversity and establish neuronal circuits in the medulla, the largest component of the optic lobe. Our recent research revealed key features of medulla development, such as birth‐order‐dependent specification of neuronal types and the subdivision of the medulla primordium into concentric zones, which is characterized by the expression of four transcription factors. Here, we review recent investigations into the development of the medulla and discuss the mechanisms that establish functional neuronal circuits.


Developmental Biology | 2016

eyeless/Pax6 controls the production of glial cells in the visual center of Drosophila melanogaster.

Takumi Suzuki; Rie Takayama; Makoto Sato

Pax6 is known as a neurogenic factor in the development of the central nervous system and regulates proliferation of neuronal progenitor cells and promotes neuronal differentiation. In addition to neurogenesis, Pax6 is also involved in the specification and maturation of glial cells. Here, we show that Eyeless (Ey), Drosophila homolog of Pax6, regulates the production of glial cells in the brain. In the developing fly visual center, the production of neurons and glial cells are controlled by the temporal transcription factors that are sequentially expressed in neuroblasts (NBs). Among them, NBs of the last temporal window produce astrocyte-like glial cells. Ey is strongly expressed in the middle aged NBs, whose temporal window is earlier compared with glia producing older NBs. Weak Ey expression is also detected in the glia producing NBs. Our results suggest that Ey expression in the middle aged NBs indirectly control gliogenesis from the oldest NBs by regulating other temporal transcription factors. Additionally, weak Ey expression in the NBs of last temporal window may directly control gliogenesis. Ey is also expressed in neurons produced from the NBs of Ey-positive temporal window. Interestingly, neuron-specific overexpression of Ey causes significant increase in glial cells suggesting that neuronal expression of Ey may also contribute to gliogenesis. Thus, Pax6-dependent regulation of astrocyte-like glial development is conserved throughout the animal kingdom.


Journal of Insect Physiology | 2009

Rectal sac distention is induced by 20-hydroxyecdysone in the pupa of Bombyx mori.

Takumi Suzuki; Sho Sakurai; Masafumi Iwami

Holometabolous insects do not excrete but store metabolic wastes during the pupal period. The waste is called meconium and is purged after adult emergence. Although the contents of meconium are well-studied, the developmental and physiological regulation of meconium accumulation is poorly understood. In Bombyx mori, meconium is accumulated in the rectal sac; thereby, the rectal sac distends at the late pupal stage. Here, we show that rectal sac distention occurs between 4 and 5 days after pupation. The distention is halted by brain-removal just after larval-pupal ecdysis but not by brain-removal 1 day after pupation. In the pupae, brain-removal just after ecdysis kept the hemolymph ecdysteroid titer low during early and mid-pupal stages. An injection of 20-hydroxyecdysone (20E) evoked the distention that was halted by brain-removal in a dose-dependent manner. Therefore, brain-removal caused the lack of ecdysteroid, and rectal sac distention did not appear in the brain-removed pupae because of the lack of ecdysteroid. We conclude that rectal sac distention is one of the developmental events regulated by 20E during the pupal period in B. mori.


Cell Reports | 2016

Formation of Neuronal Circuits by Interactions between Neuronal Populations Derived from Different Origins in the Drosophila Visual Center

Takumi Suzuki; Eri Hasegawa; Yasuhiro Nakai; Masako Kaido; Rie Takayama; Makoto Sato

A wide variety of neurons, including populations derived from different origins, are precisely arranged and correctly connected with their partner to establish a functional neural circuit during brain development. The molecular mechanisms that orchestrate the production and arrangement of these neurons have been obscure. Here, we demonstrate that cell-cell interactions play an important role in establishing the arrangement of neurons of different origins in the Drosophila visual center. Specific types of neurons born outside the medulla primordium migrate tangentially into the developing medulla cortex. During their tangential migration, these neurons express the repellent ligand Slit, and the two layers that the neurons intercalate between express the receptors Robo2 and Robo3. Genetic analysis suggests that Slit-Robo signaling may control the positioning of the layer cells or their processes to form a path for migration. Our results suggest that conserved axon guidance signaling is involved in the interactions between neurons of different origins during brain development.


Journal of Insect Physiology | 2011

Steroidal regulation of hydrolyzing activity of the dietary carbohydrates in the silkworm, Bombyx mori

Takumi Suzuki; Sho Sakurai; Masafumi Iwami

Blood sugar is an essential energy source for growth and development and is maintained at a constant level through precise regulation of formation and utilization. Sugars are produced from dietary carbohydrates by enzymatic hydrolysis in the digestive tract, which are under the homeostatic control of paracrine and prandial mechanisms in mammals. Here, we show that dietary carbohydrates hydrolyzing activity of the digestive tract is developmentally regulated by the steroid hormone ecdysone in the silkworm, Bombyx mori. The dietary carbohydrates hydrolyzing activity remained high throughout the last larval period and then decreased to negligible levels until the pupal period. However, dietary carbohydrates digestive activities were constitutively high when the steroidogenic organ, prothoracic glands were ablated. The prothoracic glands produced and released a large amount of ecdysone at the end of the larval period, suggesting that ecdysone is responsible for the decrease in dietary carbohydrates hydrolyzing activity. In fact, ecdysone decreased the activity to negligible levels in silkworms lacking the prothoracic glands. The present results indicate that the dietary carbohydrates hydrolyzing activity is regulated by ecdysone and that an increase in ecdysone titer decreases that activity at the end of the larval period, suggesting that ecdysone is essential for metabolic coordination during development.


The Journal of Neuroscience | 2016

Wnt Signaling Specifies Anteroposterior Progenitor Zone Identity in the Drosophila Visual Center.

Takumi Suzuki; Olena Trush; Tetsuo Yasugi; Rie Takayama; Makoto Sato

During brain development, various types of neuronal populations are produced from different progenitor pools to produce neuronal diversity that is sufficient to establish functional neuronal circuits. However, the molecular mechanisms that specify the identity of each progenitor pool remain obscure. Here, we show that Wnt signaling is essential for the specification of the identity of posterior progenitor pools in the Drosophila visual center. In the medulla, the largest component of the visual center, different types of neurons are produced from two progenitor pools: the outer proliferation center (OPC) and glial precursor cells (GPCs; also known as tips of the OPC). We found that OPC-type neurons are produced from the GPCs at the expense of GPC-type neurons when Wnt signaling is suppressed in the GPCs. In contrast, GPC-type neurons are ectopically induced when Wnt signaling is ectopically activated in the OPC. These results suggest that Wnt signaling is necessary and sufficient for the specification of the progenitor pool identity. We also found that Homothorax (Hth), which is temporally expressed in the OPC, is ectopically induced in the GPCs by suppression of Wnt signaling and that ectopic induction of Hth phenocopies the suppression of Wnt signaling in the GPCs. Thus, Wnt signaling is involved in regionalization of the fly visual center through the specification of the progenitor pool located posterior to the medulla by suppressing Hth expression. SIGNIFICANCE STATEMENT Brain consists of considerably diverse neurons of different origins. In mammalian brain, excitatory and inhibitory neurons derive from the dorsal and ventral telencephalon, respectively. Multiple progenitor pools also contribute to the neuronal diversity in fly brain. However, it has been unclear how differences between these progenitor pools are established. Here, we show that Wnt signaling, an evolutionarily conserved signaling, is involved in the process that establishes the differences between these progenitor pools. Because β-catenin signaling, which is under the control of Wnt ligands, specifies progenitor pool identity in the developing mammalian thalamus, Wnt signaling-mediated specification of progenitor pool identity may be conserved in insect and mammalian brains.


Journal of Insect Physiology | 2010

Physiological requirements for 20-hydroxyecdysone-induced rectal sac distention in the pupa of the silkworm, Bombyx mori.

Takumi Suzuki; Sho Sakurai; Masafumi Iwami

Successful insect development is achieved via appropriate fluctuation of ecdysteroid levels. When an insects ecdysteroid level is disrupted, physiological and developmental defects occur. In the pupa of the silkworm, Bombyx mori, the rectal sac is an essential organ that operates as a repository for degraded ecdysteroids, and it can be distended by administration of 20-hydroxyecdysone (20E). Our previous study showed that rectal sac distention appears 4 days after 20E administration. Hemolymph ecdysteroid levels, however, decrease to lower level during this period. Thus, the timing of the rectal sac distention does not match with that of ecdysteroid elevation. Here, we examine how 20E induces rectal sac distention. A ligature experiment and ecdysteroid quantification showed that continuous 20E stimulation induces rectal sac distention. Thorax tissue contributed to the continuous 20E stimulation needed to induce distention. Ecdysteroid released from the thorax tissue may be converted to 20E by ecdysone 20-hydroxylase to produce continuous 20E stimulation. Thus, the ecdysone metabolic pathway plays a critical role in rectal sac distention.


iScience | 2018

Netrin signaling defines the regional border in the Drosophila visual center

Takumi Suzuki; Chuyan Liu; Satoru Kato; Kohei Nishimura; Hiroki Takechi; Tetsuo Yasugi; Rie Takayama; Satoko Hakeda-Suzuki; Takashi Suzuki; Makoto Sato

Summary The brain consists of distinct domains defined by sharp borders. So far, the mechanisms of compartmentalization of developing tissues include cell adhesion, cell repulsion, and cortical tension. These mechanisms are tightly related to molecular machineries at the cell membrane. However, we and others demonstrated that Slit, a chemorepellent, is required to establish the borders in the fly brain. Here, we demonstrate that Netrin, a classic guidance molecule, is also involved in the compartmental subdivision in the fly brain. In Netrin mutants, many cells are intermingled with cells from the adjacent ganglia penetrating the ganglion borders, resulting in disorganized compartmental subdivisions. How do these guidance molecules regulate the compartmentalization? Our mathematical model demonstrates that a simple combination of known guidance properties of Slit and Netrin is sufficient to explain their roles in boundary formation. Our results suggest that Netrin indeed regulates boundary formation in combination with Slit in vivo.

Collaboration


Dive into the Takumi Suzuki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroki Takechi

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge