Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takuto Kumano is active.

Publication


Featured researches published by Takuto Kumano.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Natural low-molecular mass organic compounds with oxidase activity as organocatalysts

Tatsuya Nishiyama; Yoshiteru Hashimoto; Hitoshi Kusakabe; Takuto Kumano; Michihiko Kobayashi

Significance Organocatalysts are low-molecular mass organic compounds composed of nonmetallic elements. Here, we report that actinorhodin (ACT), a bacterial-derived antimicrobial compound, acts as an organocatalyst, as indicated by the following findings: (i) substrate oxidation reactions that produced H2O2 proceeded in the presence of ACT; (ii) ACT was not consumed during the reactions; and (iii) a catalytic amount of ACT consumed an excess amount of the substrates. We propose that ACT kills bacteria by producing toxic amounts of H2O2. We also screened various ACT-like natural products and identified several that exhibited catalytic activity, suggesting that living organisms produce and use them as biocatalysts in nature. Organocatalysts, low-molecular mass organic compounds composed of nonmetallic elements, are often used in organic synthesis, but there have been no reports of organocatalysts of biological origin that function in vivo. Here, we report that actinorhodin (ACT), a natural product derived from Streptomyces coelicolor A3(2), acts as a biocatalyst. We purified ACT and assayed its catalytic activity in the oxidation of l-ascorbic acid and l-cysteine as substrates by analytical methods for enzymes. Our findings were as follows: (i) oxidation reactions producing H2O2 proceeded upon addition of ACT to the reaction mixture; (ii) ACT was not consumed during the reactions; and (iii) a small amount (catalytic amount) of ACT consumed an excess amount of the substrates. Even at room temperature, atmospheric pressure, and neutral pH, ACT showed catalytic activity in aqueous solution, and ACT exhibited substrate specificity in the oxidation reactions. These findings reveal ACT to be an organocatalyst. ACT is known to show antibiotic activity, but its mechanism of action remains unknown. On the basis of our results, we propose that ACT kills bacteria by catalyzing the production of toxic levels of H2O2. We also screened various other natural products of bacterial, plant, and animal origins and found that several of the compounds exhibited catalytic activity, suggesting that living organisms produce and use these compounds as biocatalysts in nature.


Journal of Biological Chemistry | 2016

Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction

Tomoko Abe; Yoshiteru Hashimoto; Ye Zhuang; Yin Ge; Takuto Kumano; Michihiko Kobayashi

We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its “enzymatic activity” and (ii) subsequent “chemical” S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Discovery of a sesamin-metabolizing microorganism and a new enzyme

Takuto Kumano; Etsuko Fujiki; Yoshiteru Hashimoto; Michihiko Kobayashi

Significance Lignans, including sesamin, are produced by a wide variety of plants, but the microbial degradation of lignan has not been identified biochemically. Here, we show that Sinomonas sp. no. 22 can catabolize sesamin as a sole-carbon source. We identified the sesamin-converting enzyme, SesA, from strain Sinomonas sp. no. 22. SesA catalyzed methylene group transfer from sesamin to tetrahydrofolate (THF). The resulting 5,10-CH2-THF might find use as a C1-donor for bioprocesses. SesA gene homologs were found in the genomes of both Gram-positive and Gram-negative bacteria, suggesting that sesamin (lignan) utilization is a widespread, but still unrecognized, function in environments where lignans are produced and degraded. Sesamin is one of the major lignans found in sesame oil. Although some microbial metabolites of sesamin have been identified, sesamin-metabolic pathways remain uncharacterized at both the enzyme and gene levels. Here, we isolated microorganisms growing on sesamin as a sole-carbon source. One microorganism showing significant sesamin-degrading activity was identified as Sinomonas sp. no. 22. A sesamin-metabolizing enzyme named SesA was purified from this strain and characterized. SesA catalyzed methylene group transfer from sesamin or sesamin monocatechol to tetrahydrofolate (THF) with ring cleavage, yielding sesamin mono- or di-catechol and 5,10-methylenetetrahydrofolate. The kinetic parameters of SesA were determined to be as follows: Km for sesamin = 0.032 ± 0.005 mM, Vmax = 9.3 ± 0.4 (μmol⋅min−1⋅mg−1), and kcat = 7.9 ± 0.3 s−1. Next, we investigated the substrate specificity. SesA also showed enzymatic activity toward (+)-episesamin, (−)-asarinin, sesaminol, (+)-sesamolin, and piperine. Growth studies with strain no. 22, and Western blot analysis revealed that SesA formation is inducible by sesamin. The deduced amino acid sequence of sesA exhibited weak overall sequence similarity to that of the protein family of glycine cleavage T-proteins (GcvTs), which catalyze glycine degradation in most bacteria, archaea, and all eukaryotes. Only SesA catalyzes C1 transfer to THF with ring cleavage reaction among GcvT family proteins. Moreover, SesA homolog genes are found in both Gram-positive and Gram-negative bacteria. Our findings provide new insights into microbial sesamin metabolism and the function of GcvT family proteins.


Scientific Reports | 2016

Discovery of piperonal-converting oxidase involved in the metabolism of a botanical aromatic aldehyde

Shiori Doi; Yoshiteru Hashimoto; Chiaki Tomita; Takuto Kumano; Michihiko Kobayashi

Piperonal-catabolizing microorganisms were isolated from soil, the one (strain CT39-3) exhibiting the highest activity being identified as Burkholderia sp. The piperonal-converting enzyme involved in the initial step of piperonal metabolism was purified from strain CT39-3. Gene cloning of the enzyme and a homology search revealed that the enzyme belongs to the xanthine oxidase family, which comprises molybdoenzymes containing a molybdopterin cytosine dinucleotide cofactor. We found that the piperonal-converting enzyme acts on piperonal in the presence of O2, leading to formation of piperonylic acid and H2O2. The growth of strain CT39-3 was inhibited by higher concentrations of piperonal in the culture medium. Together with this finding, the broad substrate specificity of this enzyme for various aldehydes suggests that it would play an important role in the defense mechanism against antimicrobial compounds derived from plant species.


Journal of General and Applied Microbiology | 2016

Nitrile-synthesizing enzyme: Gene cloning, overexpression and application for the production of useful compounds

Takuto Kumano; Yuko Takizawa; Sakayu Shimizu; Michihiko Kobayashi

One of the nitrile-synthesizing enzymes, β-cyano-L-alanine synthase, catalyzes β-cyano-L-alanine (β-CNAla) from potassium cyanide and O-acetyl-L-serine or L-cysteine. We have identified this enzyme from Pseudomonas ovalis No. 111. In this study, we cloned the β-CNAla synthase gene and expressed it in Escherichia coli and Rhodococcus rhodochrous. Furthermore, we carried out co-expression of β-CNAla synthase with nitrilase or nitrile hydratases in order to synthesize aspartic acid and asparagine from KCN and O-acetyl-L-serine. This strategy can be used for the synthesis of labeled amino acids by using a carbon-labeled KCN as a substrate, resulting in an application for positron emission tomography.


The Journal of Antibiotics | 2017

Amide compound synthesis by adenylation domain of bacillibactin synthetase

Tomoko Abe; Yoshiteru Hashimoto; Sayaka Sugimoto; Kenta Kobayashi; Takuto Kumano; Michihiko Kobayashi

The adenylation domain of nonribosomal peptide synthetase (NRPS) is responsible for the selective substrate recognition and its activation (as an acyl-O-AMP intermediate) during ATP consumption. DhbE, a stand-alone adenylation domain, acts on an aromatic acid, 2,3-dihydroxybenzoic acid (DHB). This activation is the initial step of the synthesis of bacillibactin that is a high-affinity small-molecule iron chelator also termed siderophore. Subsequently, the activated DHB is transferred and attached covalently to a peptidyl carrier protein domain via a thioester bond. Adenylation domains belong to the superfamily of adenylate-forming enzymes including acetyl-CoA synthetase, acyl-CoA synthetase and firefly luciferase. We previously reported a novel N-acylation reaction for an acyl-CoA synthetase (AcsA) that originally catalyzes the formation of a thioester bond between an acid and CoA, yielding acyl-CoA. This novel reaction was also confirmed for acetyl-CoA synthetase and firefly luciferase, but not yet for an adenylation domain. Here, we for the first time demonstrated the synthesis of N-acyl-L-cysteine by a stand-alone adenylation domain, DhbE. When DHB and L-cysteine were used as substrates of DhbE, N-DHB-L-cysteine was formed. A Vmax value of 0.0156±0.0008 units mg−1 and Km values of 150±18.3 mM for L-cysteine and 0.0579±0.0260 mM for DHB were obtained in this novel reaction. Furthermore, DhbE synthesized N-benzoyl-L-cysteine when benzoic acid and L-cysteine were used as substrates. Through the N-acylation reaction of DhbE, we also succeeded in the synthesis of N-aromatic acyl compounds that have never previously been reported to be produced by this enzymatic method.


PLOS ONE | 2017

New function of aldoxime dehydratase: Redox catalysis and the formation of an expected product

Masatoshi Yamada; Yoshiteru Hashimoto; Takuto Kumano; Seiya Tsujimura; Michihiko Kobayashi

In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA), which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities) of wild-type OxdA, OxdA(WT). Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D)], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT) and OxdA(H320D) revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D) was 30 times higher than that of OxdA(WT). Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT) and OxdA(H320D) showed the activity, the activity of OxdA(H320D) was dozens of times higher than that of OxdA(WT). These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D) were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D) with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT), which was due to the known product, Russig’s blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate.


Journal of General and Applied Microbiology | 2016

Nitrile-synthesizing enzyme: Screening, purification and characterization

Takuto Kumano; Takahisa Suzuki; Sakayu Shimizu; Michihiko Kobayashi

Cyanide is known as a toxic compound for almost all living organisms. We have searched for cyanide-resistant bacteria from the soil and stock culture collection of our laboratory, and have found the existence of a lot of microorganisms grown on culture media containing 10 mM potassium cyanide. Almost all of these cyanide-resistant bacteria were found to show β-cyano-L-alanine (β-CNAla) synthetic activity. β-CNAla synthase is known to catalyze nitrile synthesis: the formation of β-CNAla from potassium cyanide and O-acetyl-L-serine or L-cysteine. We found that some microorganisms were able to detoxify cyanide using O-methyl-DL-serine, O-phospho-L-serine and β-chloro-DL-alanine. In addition, we purified β-CNAla synthase from Pseudomonas ovalis No. 111 in nine steps, and characterized the purified enzyme. This enzyme has a molecular mass of 60,000 and appears to consist of two identical subunits. The purified enzyme exhibits a maximum activity at pH 8.5-9.0 at an optimal temperature of 40-50°C. The enzyme is specific for O-acetyl-L-serine and β-chloro-DL-alanine. The Km value for O-acetyl-L-serine is 10.0 mM and Vmax value is 3.57 μmol/min/mg.


Bioscience, Biotechnology, and Biochemistry | 2016

Development of nitrilase promoter-derived inducible vectors for Streptomyces

Masako Matsumoto; Yoshiteru Hashimoto; Yuki Saitoh; Takuto Kumano; Michihiko Kobayashi

An inducible expression vector, pSH19, which harbors regulatory expression system PnitA-NitR, for streptomycetes was constructed previously. Here, we have modified pSH19 to obtain shuttle vectors for Streptomyces-E. coli by introducing the replication origin of a plasmid for E. coli (ColE1) and an antibiotic-resistant gene. Six inducible shuttle vectors, pESH19cF, pESH19cR, pESH19kF, pESH19kR, pESH19aF, and pESH19aR, for Streptomyces-E. coli, were successfully developed. The stability of these vectors was examined in five different E. coli strains and Streptomyces lividans TK24. The stability test showed that the pSH19-derived shuttle vectors were stable in E. coli Stbl2 and S. lividans TK24. Heterologous expression experiments involving each of the catechol 2,3-dioxygenase, nitrilase, and N-substituted formamide deformylase genes as a reporter gene showed that pESH19cF, pESH19kF, and pESH19aF possess inducible expression ability in S. lividans TK24. Thus, these vectors were found to be useful expression tools for experiments on both Gram-negative and Gram-positive bacterial genes. Graphical abstract Physical structure of pSH19-derived inducible shuttle vectors for Streptomyces.


Scientific Reports | 2018

Hemoglobin catalyzes CoA degradation and thiol addition to flavonoids

Toshiki Nagakubo; Takuto Kumano; Yoshiteru Hashimoto; Michihiko Kobayashi

In the presence of CoA, cell-free extracts prepared from porcine liver was found to convert 7,8-dihydroxyflavone (DHF) to a pantetheine conjugate, which was a novel flavonoid. We purified a 7,8-DHF-converting enzyme from the extracts, and identified it as hemoglobin (Hb). The purified Hb showed the following two activities: (i) degradation of CoA into pantetheine through hydrolytic cleavage to yield pantetheine and 3′-phospho-adenosine-5′-diphosphate (ADP) independently of heme, and (ii) addition of a thiol (e.g., pantetheine, glutathione and cysteine) to 7,8-DHF through C-S bond formation. Human Hb also exhibited the above flavonoid-converting activity. In addition, heme-containing enzymes such as peroxidase and catalase added each of pantetheine, glutathione and cysteine to the flavonoid, although no pantetheine conjugates were synthesized when CoA was used as a substrate. These findings indicated that the thiol-conjugating activity is widely observed in heme-containing proteins. On the other hand, only Hb catalyzed the hydrolysis of CoA, followed by the thiol conjugation to synthesize the pantetheine conjugate. To the best of our knowledge, this is the first report showing that Hb has the catalytic ability to convert naturally occurring bioactive compounds, such as dietary flavonoids, to the corresponding conjugates in the presence of thiol donors or CoA.

Collaboration


Dive into the Takuto Kumano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoko Abe

Tokyo Denki University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ye Zhuang

University of Tsukuba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge