Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takuya Fukazawa is active.

Publication


Featured researches published by Takuya Fukazawa.


Oncogene | 2001

Accelerated degradation of cellular FLIP protein through the ubiquitin-proteasome pathway in p53-mediated apoptosis of human cancer cells

Takuya Fukazawa; Toshiyoshi Fujiwara; Futoshi Uno; Fuminori Teraishi; Yoshihiko Kadowaki; Takahiro Itoshima; Yoshiko Takata; Shunsuke Kagawa; Jack A. Roth; Jürg Tschopp; Noriaki Tanaka

Apoptosis is a morphologically distinct form of programmed cell death that plays a major role in cancer treatments. This cellular suicide program is known to be regulated by many different signals from both intracellular and extracellular stimuli. Here we report that p53 suppressed expression of the cellular FLICE-inhibitory protein (FLIP) that potentially blocks apoptotic signaling in human colon cancer cell lines expressing mutated and wild-type p53. In contrast, the expression of the death receptor KILLER/DR5 (TRAIL-R2) had no effect on FLIP expression, although exogenous p53 is known to induce KILLER/DR5 expression. In line with these observations, FLIP-negative cancer cells were sensitive to both p53- and KILLER/DR5-mediated apoptosis, whereas cells containing high levels of FLIP underwent apoptotic cell death when triggered by ectopic p53 expression but not by KILLER/DR5 expression. Treating the cells with a specific inhibitor of the proteasome inhibited the decrease of FLIP by p53, suggesting that p53 enhances the degradation of FLIP via a ubiquitin-proteasome pathway. Thus, the data indicate that p53-mediated downregulation of FLIP may explain the potent sensitization of human cancer cells to the apoptotic suicide program induced by wild-type p53 gene transfer.


Oncogene | 2000

Overexpression of the wild-type p53 gene inhibits NF-κB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells

Jianghua Shao; Toshiyoshi Fujiwara; Yoshihiko Kadowaki; Takuya Fukazawa; Toshihiko Waku; Takahiro Itoshima; Tomoki Yamatsuji; Masahiko Nishizaki; Jack A. Roth; Noriaki Tanaka

The tumor suppressor gene p53 is a potent transcriptional regulator of genes which are involved in many cellular activities including cell cycle arrest, apoptosis, and angiogenesis. Recent studies have demonstrated that the activation of the transcriptional factor nuclear factor κB (NF-κB) plays an essential role in preventing apoptotic cell death. In this study, to better understand the mechanism reponsible for the p53-mediated apoptosis, the effect of wild-type p53 (wt-p53) gene transfer on nuclear expression of NF-κB was determined in human colon cancer cell lines. A Western blot analysis of nuclear extracts demonstrated that NF-κB protein levels in the nuclei were suppressed by the transient expression of the wt-p53 in a dose-dependent manner. Transduced wt-p53 expression increased the cytoplasmic expression of IκBα as well as its binding ability to NF-κB, thus markedly reducing the amount of NF-κB that translocated to the nucleus. The decrease in nuclear NF-κB protein correlated with the decreased NF-κB constitutive activity measured by electrophoretic mobility shift assay. Furthermore, parental cells transfected with NF-κB were better protected from cell death induced by the wt-p53 gene transfer. We also found that the wt-p53 gene transfer was synergistic with aspirin (acetylsalicylic acid) in inhibiting NF-κB constitutive activity, resulting in enhanced apoptotic cell death. These results suggest that the inhibition of NF-κB activity is a plausible mechanism for apoptosis induced by the wt-p53 gene transfer in human colon cancer cells and that anti-NF-κB reagent aspirin could make these cells more susceptible to apoptosis.


Clinical Cancer Research | 2011

Epigenetic Silencing of MicroRNA-34b/c Plays an Important Role in the Pathogenesis of Malignant Pleural Mesothelioma

Takafumi Kubo; Shinichi Toyooka; Kazunori Tsukuda; Masakiyo Sakaguchi; Takuya Fukazawa; Junichi Soh; Hiroaki Asano; Tsuyoshi Ueno; Takayuki Muraoka; Hiromasa Yamamoto; Yasutomo Nasu; Takumi Kishimoto; Harvey I. Pass; Hideki Matsui; Nam Ho Huh; Shinichiro Miyoshi

Purpose: Malignant pleural mesothelioma (MPM) is an aggressive tumor with a dismal prognosis. Unlike other malignancies, TP53 mutations are rare in MPM. Recent studies have showed that altered expression of microRNA (miRNA) is observed in human malignant tumors. In this study, we investigated the alterations of miR-34s, a direct transcriptional target of TP53, and the role of miR-34s on the pathogenesis of MPM. Experimental Design: Aberrant methylation and expression of miR-34s were examined in MPM cell lines and tumors. miR-34b/c was transfected to MPM cells to estimate the protein expression, cell proliferation, invasion, and cell cycle. Results: Aberrant methylation was present in 2 (33.3%) of 6 MPM cell lines and 13 (27.7%) of 47 tumors in miR-34a and in all 6 MPM cell lines (100%) and 40 (85.1%) of 47 tumors in miR-34b/c. Expression of miR-34a and 34b/c in all methylated cell lines was reduced and restored with 5-aza-2′-deoxycytidine treatment. Because epigenetic silencing was the major event in miR-34b/c, we investigated the functional role of miR-34b/c in MPM. miR-34b/c–transfected MPM cells with physiologic miR-34b/c expression exhibited antiproliferation with G1 cell cycle arrest and suppression of migration, invasion, and motility. The forced overexpression of miR-34b/c, but not p53, showed a significant antitumor effect with the induction of apoptosis in MPM cells. Conclusions: We show that the epigenetic silencing of miR-34b/c by methylation is a crucial alteration and plays an important role in the tumorigenesis of MPM, suggesting potential therapeutic options for MPM. Clin Cancer Res; 17(15); 4965–74. ©2011 AACR.


Oncogene | 1999

Differential involvement of the CD95 (Fas/APO-1) receptor/ligand system on apoptosis induced by the wild-type p53 gene transfer in human cancer cells

Takuya Fukazawa; Toshiyoshi Fujiwara; Yoshinori Morimoto; Jianghua Shao; Masahiko Nishizaki; Yoshihiko Kadowaki; Akio Hizuta; Laurie B. Owen-Schaub; Jack A. Roth; Noriaki Tanaka

The CD95 (Fas/APO-1) system regulates a number of physiological and pathological processes of cell death. The ligand for CD95 induces apoptosis in sensitive target cells by interacting with a transmembrane cell surface CD95 receptor. We previously reported that the recombinant adenovirus-mediated transfer of the wild-type p53 gene caused apoptotic cell death in a variety of human cancer cells. To better understand the mechanism responsible for this cell death signaling, we have investigated the potential involvement of the CD95 receptor/ligand system in p53-mediated apoptosis. The transient expression of the wild-type p53 gene up-regulated the CD95 ligand mRNA as well as protein expression in H1299 human lung cancer cells deficient for p53 and in DLD-1 and SW620 human colon cancer cells with mutated p53, all of which constitutively expressed CD95 receptor as shown by a flow cytometric analysis, and induced rapid apoptotic cell death as early as 24 h after gene transfer. However, the sensitivity to the cytolytic effect of agonistic anti-CD95 antibody (CH11) varied among these cell lines: CH11 induced apoptosis in H1299 cells, but not in DLD-1 and SW620 cells despite their abundant CD95 receptor expression, suggesting that the CD95 receptors on DLD-1 and SW620 cells might be inactivated. In addition, an antagonistic anti-CD95 ligand antibody (4H9) that interfered with the CD95-receptor-ligand interaction partially reduced the apoptosis induced by the wild-type p53 gene transfer in H1299 cells, whereas apoptosis of DLD-1 and SW620 cells occurred in the presence of 4H9. Taken together, these findings led us to conclude that the CD95 receptor/ligand system is differentially involved in p53-mediated apoptosis, suggesting that the restoration of the wild-type p53 function may mediate apoptosis through CD95 receptor/ligand interactions as well as an alternative pathway.


Journal of Clinical Investigation | 2012

KrasG12D and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung

Yutaka Maeda; Tomoshi Tsuchiya; Haiping Hao; David H. Tompkins; Yan Xu; Michael L. Mucenski; Lingling Du; Angela R. Keiser; Takuya Fukazawa; Yoshio Naomoto; Takeshi Nagayasu; Jeffrey A. Whitsett

Mucinous adenocarcinoma of the lung is a subtype of highly invasive pulmonary tumors and is associated with decreased or absent expression of the transcription factor NK2 homeobox 1 (NKX2-1; also known as TTF-1). Here, we show that haploinsufficiency of Nkx2-1 in combination with oncogenic Kras(G12D), but not with oncogenic EGFR(L858R), caused pulmonary tumors in transgenic mice that were phenotypically similar to human mucinous adenocarcinomas. Gene expression patterns distinguished tumor goblet (mucous) cells from nontumorigenic airway and intestinal goblet cells. Expression of NKX2-1 inhibited urethane and oncogenic Kras(G12D)-induced tumorigenesis in vivo. Haploinsufficiency of Nkx2-1 enhanced Kras(G12D)-mediated tumor progression, but reduced EGFR(L858R)-mediated progression. Genome-wide analysis of gene expression demonstrated that a set of genes induced in mucinous tumors was shared with genes induced in a nontumorigenic chronic lung disease, while a distinct subset of genes was specific to mucinous tumors. ChIP with massively parallel DNA sequencing identified a direct association of NKX2-1 with the genes induced in mucinous tumors. NKX2-1 associated with the AP-1 binding element as well as the canonical NKX2-1 binding element. NKX2-1 inhibited both AP-1 activity and tumor colony formation in vitro. These data demonstrate that NKX2-1 functions in a context-dependent manner in lung tumorigenesis and inhibits Kras(G12D)-driven mucinous pulmonary adenocarcinoma.


Transplantation | 2004

Establishment of a highly differentiated immortalized human cholangiocyte cell line with SV40T and hTERT.

Masanobu Maruyama; Naoya Kobayashi; Karen A. Westerman; Masakiyo Sakaguchi; Jean E. Allain; Toshinori Totsugawa; Teru Okitsu; Takuya Fukazawa; Anne Weber; Donna B. Stolz; Philippe Leboulch; Noriaki Tanaka

Background. Cholangiocytes perform an essential role in important pathophysiologic functions in the liver. Establishment of a human cholangiocyte line facilitates advances in cholangiocyte research and clinical applications for cell therapies. Here, we describe the immortalization of human cholangiocytes using serial transfection of simian virus 40 large T (SV40T) followed by human telomerase reverse transcriptase (hTERT). Methods. SV40T-transduced human liver OUMS-21 cells were superinfected with a retroviral vector SSR#197 encoding hTERT and green fluorescent protein (GFP) cDNAs. Resulting cell lines were evaluated for gene expression, functional cholangiogenic characteristics in vitro and in vivo, and response to lipopolysaccharide (LPS). Results. One of the SV40T- and hTERT-immortalized cholangiocyte clones, MMNK-1, was established. MMNK-1 expressed cholangiocyte markers, including cytokeratin (CK)-7 and -19 and exhibited cholangiogenic tubule formation in a Matrigel assay. When transplanted into the immunodeficient mice, MMNK-1 cells developed bile duct-like structures in the spleen. After LPS treatment, MMNK-1 cells produced interleukin-6 and failed to form well-developed tubular structures in Matrigel. Conclusion. We have established an immortalized cholangiocyte cell line, MMNK-1, using SV40T and hTERT transduction.


Transplantation | 2004

Establishment of an immortalized human-liver endothelial cell line with SV40T and hTERT.

Toshihisa Matsumura; Michihiko Takesue; Karen A. Westerman; Teru Okitsu; Masakiyo Sakaguchi; Takuya Fukazawa; Toshinori Totsugawa; Hirofumi Noguchi; Shinichiro Yamamoto; Donna B. Stolz; Noriaki Tanaka; Philippe Leboulch; Naoya Kobayashi

Background and Aims. Liver endothelial cells (LECs) perform an essential role in important pathophysiologic functions in the liver. Establishment of a human LEC line facilitates advances in LEC research. Here, we present immortalization of human LECs using retroviral gene transfer of simian virus 40 large T antigen (SV40T) and human telomerase reverse transcriptase (hTERT). We also demonstrate excision of SV40T and hTERT with TAT-mediated Cre/loxP recombination and subsequent cell sorting. Methods. First, human LECs were transduced with a retroviral vector somatostatin receptor (SSR)#69 expressing SV40T and hygromycin-resistance genes flanked by a pair of loxA recombination targets. Then, cells were retrovirally superinfected with SSR#197 encoding hTERT and green fluorescent protein (GFP) cDNAs that were intervened by two loxBs. One SV40T-and hTERT-immortalized LEC clone, TMNK-1, was established and analyzed for its biologic characteristics. Results. The cells were hygromycin-resistant and uniformly positive for GFP expression. TMNK-1 expressed EC markers, including factor VIII, vascular endothelial growth factor receptors (flt-1, KDR/Flk-1), and CD34, showed uptake of Di-I-acetylated-low-density lipoprotein and angiogenic potential in Matrigel assays. After lipopolysaccharide treatment, TMNK-1 produced tumor necrosis factor (TNF)-&agr; and interleukin (IL)-6 and exhibited increased expression of intra-cellular adhesive molecule-1, vascular cellular adhesive molecule-1, and VE-cadherin. After treatment with TAT-Cre recombinase fusion protein, approximately 60% of TMNK-1 was negative for GFP expression, and subsequent cell sorting of this population for GFP allowed for collection of the reverted form of TMNK-1. Conclusions. This study demonstrates the utility and efficiency of the reversible immortalization procedure to expand primary human LECs for basic studies.


Cell Death & Differentiation | 1999

Overexpression of the p21 sdi1 gene induces senescence-like state in human cancer cells: implication for senescence-directed molecular therapy for cancer.

Shunsuke Kagawa; Toshiyoshi Fujiwara; Yoshihiko Kadowaki; Takuya Fukazawa; Rha Sok-Joo; Jack A. Roth; Noriaki Tanaka

Normal cells in a culture enter a nondividing state after a finite number of population doubling, which is termed replicative senescence, whereas cancer cells have unlimited proliferative potential and are thought to exhibit an immmortal phenotype by escaping from senescence. The p21 gene (also known as sdi1), which encodes the cyclin-dependent kinase inhibitor, is expressed at high levels in senescent cells and contributes to the growth arrest. To examine if the p21sdi1 gene transfer could induce senescence in human cancer cells, we utilized an adenoviral vector-based expression system and four human cancer cell lines differing in their p53 status. Transient overexpression of p21sdi1 on cancer cells induced quiescence by arresting the cell cycle at the G1 phase and exhibited morphological changes, such as enlarged nuclei as well as a flattened cellular shape, specific to the senescence phenotype. We also showed that p21sdi1-transduced cancer cells expressed β-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Moreover, the polymerase chain reaction-based assay demonstrated that levels of telomerase activity were significantly lower in p21sdi1-expressing cells compared to parental cancer cells. These observations provide the evidence that p21sdi1 overexpression could induce a senescence-like state and reduce telomerase activity in human cancer cells, suggesting that these novel p21sdi1 functions may have important implications for anticancer therapy.


Cancer Research | 2004

Development of a Cancer-Targeted Tissue-Specific Promoter System

Takuya Fukazawa; Yutaka Maeda; Frances M. Sladek; Laurie B. Owen-Schaub

Present cancer gene therapy using proapoptotic genes has had limited success because the therapy is prone to cause side effects as a result of the lack of tissue and cancer specificity. To target cancer cells without damaging normal cells, we have designed a novel dual promoter system in which a tissue-specific transcription system under the control of a cancer-specific promoter drives expression of a therapeutic gene. The applicability of this system was demonstrated by adapting it to target lung cancer. We termed this lung cancer system TTS (TTF1 gene under the control of human telomerase reverse transcriptase promoter and human surfactant protein A1 promoter). The TTS system showed much higher promoter activity in lung cancer cells compared with other kinds of cancer and normal lung cells, including stem cells. Moreover, insertion of negative glucocorticoid responsive elements in the system allows it to be drug controllable. The approaches that we have used could be adapted to target other types of cancer. We report a novel cancer-targeted tissue-specific dual promoter system designed for gene therapy.


Transplantation | 2005

Transplantation of human hepatocytes cultured with deleted variant of hepatocyte growth factor prolongs the survival of mice with acute liver failure.

Yong Chen; Naoya Kobayashi; Satoshi Suzuki; Alejandro Soto-Gutierrez; Jorge David Rivas-Carrillo; Kimiaki Tanaka; Nalu Navarro-Alvarez; Takuya Fukazawa; Michiki Narushima; Atsushi Miki; Teru Okitsu; Hiroshi Amemiya; Noriaki Tanaka

Background. Considering the scarcity of donor livers, it is extremely important to establish a functional culture method for isolated hepatocytes. As a tool for maintaining hepatocyte functions in vitro, dHGF, a variant of HGF (hepatocyte growth factor) with a deletion of five amino acids, attracted our attention because it is less cytotoxic compared with HGF. Methods. We evaluated growth, albumin production, metabolizing abilities of ammonia, lidocaine, and diazepam of human hepatocytes in the presence of dHGF (10–1000 ng/ml). The gene expression of liver markers was comparatively analyzed. The effect of intrasplenic transplantation of dHGF-treated human hepatocytes into severe combined immunodeficient (SCID) mice was evaluated in an acute liver failure (ALF) model induced by D-galactosamine (D-gal). Results. When 100 ng/ml of dHGF was utilized, metabolism rates of ammonia, lidocaine, and diazepam and albumin production per unit cell significantly increased. The gene expression analysis demonstrated the enhanced expression of albumin, HNF-4α, and C/EBPα in the hepatocytes treated with 100 ng/ml of dHGF. Transplantation of such hepatocytes prolonged the survival of the SCID mice with ALF induced by D-gal. Conclusions. The present work clearly demonstrates the usefulness of dHGF (100 ng/ml) for maintaining the differentiated functions of human hepatocytes in tissue culture.

Collaboration


Dive into the Takuya Fukazawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yutaka Maeda

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge