Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takuya Furuta is active.

Publication


Featured researches published by Takuya Furuta.


Cancer Cell | 2016

Serine/Threonine Kinase MLK4 Determines Mesenchymal Identity in Glioma Stem Cells in an NF-κB-dependent Manner

Sung Hak Kim; Ravesanker Ezhilarasan; Emma Phillips; Daniel Gallego-Perez; Amanda Sparks; David Taylor; Katherine J. Ladner; Takuya Furuta; Hemragul Sabit; Rishi Raj Chhipa; Ju Hwan Cho; Ahmed Mohyeldin; Samuel Beck; Kazuhiko Kurozumi; Toshihiko Kuroiwa; Ryoichi Iwata; Akio Asai; Jonghwan Kim; Erik P. Sulman; Shi Yuan Cheng; L. James Lee; Mitsutoshi Nakada; Denis C. Guttridge; Biplab Dasgupta; Violaine Goidts; Krishna P. Bhat; Ichiro Nakano

Activation of nuclear factor κB (NF-κB) induces mesenchymal (MES) transdifferentiation and radioresistance in glioma stem cells (GSCs), but molecular mechanisms for NF-κB activation in GSCs are currently unknown. Here, we report that mixed lineage kinase 4 (MLK4) is overexpressed in MES but not proneural (PN) GSCs. Silencing MLK4 suppresses self-renewal, motility, tumorigenesis, and radioresistance of MES GSCs via a loss of the MES signature. MLK4 binds and phosphorylates the NF-κB regulator IKKα, leading to activation of NF-κB signaling in GSCs. MLK4 expression is inversely correlated with patient prognosis in MES, but not PN high-grade gliomas. Collectively, our results uncover MLK4 as an upstream regulator of NF-κB signaling and a potential molecular target for the MES subtype of glioblastomas.


Frontiers in Oncology | 2012

The strategy for enhancing temozolomide against malignant glioma

Mitsutoshi Nakada; Takuya Furuta; Yutaka Hayashi; Toshinari Minamoto; Jun-ichiro Hamada

A combined therapy of the alkylating agent temozolomide (TMZ) and radiotherapy is standard treatment, and it improves the survival of patients with newly diagnosed glioblastoma (GBM). The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes the most cytotoxic lesions generated by TMZ, O6-methylguanine, establishing MGMT as one of the most important DNA repair mechanisms of TMZ-induced DNA damage. Thus, the expression of MGMT, its activity, and its promoter methylation status are associated with the response of GBM to TMZ, confirming that MGMT promotes clinical resistance to TMZ. Previous studies have shown that a variety of drugs such as interferon-β (IFN-β), levetiracetam (LEV), resveratrol, and valproic acid (VAP) increased the sensitivity of TMZ through MGMT-dependent or MGMT-independent mechanisms. In this review, we describe drugs and promising molecules that influence the responsiveness of GBM to TMZ and discuss their putative mechanism of action. In MGMT-positive GBMs, drugs that modulate MGMT activity could enhance the therapeutic activity of TMZ. Thus, administration of these drugs as an adjunct to TMZ chemotherapy may have clinical applications in patients with malignant gliomas to improve the outcome.


Cancer Science | 2016

Glycogen synthase kinase-3β is a pivotal mediator of cancer invasion and resistance to therapy.

Takahiro Domoto; Ilya V. Pyko; Takuya Furuta; Katsuyoshi Miyashita; Masahiro Uehara; Takeo Shimasaki; Mitsutoshi Nakada; Toshinari Minamoto

Tumor cell invasion and resistance to therapy are the most intractable biological characteristics of cancer and, therefore, the most challenging for current cancer research and treatment paradigms. Refractory cancers, including pancreatic cancer and glioblastoma, show an inextricable association between the highly invasive behavior of tumor cells and their resistance to chemotherapy, radiotherapy and targeted therapies. These aggressive properties of cancer share distinct cellular pathways that are connected to each other by several molecular hubs. There is increasing evidence to show that glycogen synthase kinase (GSK)‐3β is aberrantly activated in various cancer types and this has emerged as a potential therapeutic target. In many but not all cancer types, aberrant GSK3β sustains the survival, immortalization, proliferation and invasion of tumor cells, while also rendering them insensitive or resistant to chemotherapeutic agents and radiation. Here we review studies that describe associations between therapeutic stimuli/resistance and the induction of pro‐invasive phenotypes in various cancer types. Such cancers are largely responsive to treatment that targets GSK3β. This review focuses on the role of GSK3β as a molecular hub that connects pathways responsible for tumor invasion and resistance to therapy, thus highlighting its potential as a major cancer therapeutic target. We also discuss the putative involvement of GSK3β in determining tumor cell stemness that underpins both tumor invasion and therapy resistance, leading to intractable and refractory cancer with dismal patient outcomes.


Neuroscience Letters | 2013

Combination therapy using Notch and Akt inhibitors is effective for suppressing invasion but not proliferation in glioma cells

Rihua Jin; Mitsutoshi Nakada; Lei Teng; Takuya Furuta; Hemragul Sabit; Yutaka Hayashi; Tim Demuth; Atsushi Hirao; Hiroshi Sato; Gang Zhao; Jun-ichiro Hamada

Molecular targeted therapy can potentially provide more effective treatment for patients with high-grade gliomas. Notch and Akt are notable target molecules as they play important roles in a variety of cellular processes, such as regeneration, differentiation, proliferation, migration, and invasion. Here, we assessed the therapeutic possibility of inhibiting Notch and Akt in gliomas using the clinically available, selective small molecule inhibitors MRK003 and MK-2206. We evaluated their efficacy individually and as a combination therapy in U251 and U87 glioma cell lines. We confirmed that MK-2206 effectively inhibits Akt phosphorylation in a dose-dependent manner, whereas MRK003 inhibits Notch signaling and Akt phosphorylation. Both MRK003 and MK-2206 significantly inhibited cell growth, migration, and invasion in a dose-dependent manner. Akt dephosphorylation was enhanced by combination therapy with MRK003 and MK-2206. However, the effect of combination treatment did not exceed that of MK-2206 monotherapy in proliferation assay. Inhibition of invasion, further enhanced by combination therapy, correlated with increased Akt inactivation. In summary, combination therapy with MRK003 and MK-2206 may be effective for inhibiting invasion but not proliferation.


Brain Tumor Pathology | 2014

Characterizing invading glioma cells based on IDH1-R132H and Ki-67 immunofluorescence

Hemragul Sabit; Mitsutoshi Nakada; Takuya Furuta; Takuya Watanabe; Yutaka Hayashi; Hiroshi Sato; Yukinari Kato; Jun-ichiro Hamada

Abstract Glioma, the most common primary brain tumor, is characterized by proliferative-invasive growth. However, the detailed biological characteristics of invading glioma cells remain to be elucidated. A monoclonal antibody (clone HMab-1) that specifically and sensitively recognizes the isocitrate dehydrogenase-1 (IDH1) protein carrying the R132H mutation can identify invading glioma cells by immunostaining. To investigate the degree of invasion in gliomas of distinct grades and the proliferative capacity of the invading cells, immunofluorescent staining was conducted using antibodies against IDH1-R132H and Ki-67 on 11 surgical and autopsy specimens of the tumor core and the invading area. Higher numbers of IDH1-R132H-positive cells in the invading area correlated with a higher tumor grade. Double staining for IDH1-R132H and Ki-67 demonstrated that most invading cells that expressed IDH1-R132H were not stained by the Ki-67 antibody, and the ratio of Ki-67-positive cells among IDH1-R132H-positive cells was significantly lower in the invasion area than in the tumor core in all grades of glioma. These data suggest that higher grade gliomas have a greater invasive potential and that invading cells possess low proliferative capacity.


Molecular Cancer Therapeutics | 2015

Glycogen Synthase Kinase 3β Sustains Invasion of Glioblastoma via the Focal Adhesion Kinase, Rac1, and c-Jun N-Terminal Kinase-Mediated Pathway

Yuri Chikano; Takahiro Domoto; Takuya Furuta; Hemragul Sabit; Ayako Kitano-Tamura; Ilya V. Pyko; Takahisa Takino; Yoshimichi Sai; Yutaka Hayashi; Hiroshi Sato; Ken-ichi Miyamoto; Mitsutoshi Nakada; Toshinari Minamoto

The failure of current treatment options for glioblastoma stems from their inability to control tumor cell proliferation and invasion. Biologically targeted therapies offer great hope and one promising target is glycogen synthase kinase-3β (GSK3β), implicated in various diseases, including cancer. We previously reported that inhibition of GSK3β compromises the survival and proliferation of glioblastoma cells, induces their apoptosis, and sensitizes them to temozolomide and radiation. Here, we explore whether GSK3β also contributes to the highly invasive nature of glioblastoma. The effects of GSK3β inhibition on migration and invasion of glioblastoma cells were examined by wound-healing and Transwell assays, as well as in a mouse model of glioblastoma. We also investigated changes in cellular microarchitectures, cytoskeletal components, and proteins responsible for cell motility and invasion. Inhibition of GSK3β attenuated the migration and invasion of glioblastoma cells in vitro and that of tumor cells in a mouse model of glioblastoma. These effects were associated with suppression of the molecular axis involving focal adhesion kinase, guanine nucleotide exchange factors/Rac1 and c-Jun N-terminal kinase. Changes in cellular phenotypes responsible for cell motility and invasion were also observed, including decreased formation of lamellipodia and invadopodium-like microstructures and alterations in the subcellular localization, and activity of Rac1 and F-actin. These changes coincided with decreased expression of matrix metalloproteinases. Our results confirm the potential of GSK3β as an attractive therapeutic target against glioblastoma invasion, thus highlighting a second role in this tumor type in addition to its involvement in chemo- and radioresistance. Mol Cancer Ther; 14(2); 564–74. ©2014 AACR.


Oncotarget | 2017

Biological basis and clinical study of glycogen synthase kinase- 3β-targeted therapy by drug repositioning for glioblastoma

Takuya Furuta; Hemragul Sabit; Yu Dong; Katsuyoshi Miyashita; Masashi Kinoshita; Naoyuki Uchiyama; Yasuhiko Hayashi; Yutaka Hayashi; Toshinari Minamoto; Mitsutoshi Nakada

Background Glycogen synthase kinase (GSK)-3β has emerged as an appealing therapeutic target for glioblastoma (GBM). Here, we investigated the therapeutic effect of the current approved drugs against GBM via inhibition of GSK3β activity both, in experimental setting and in a clinical study for recurrent GBM patients by repositioning existent drugs in combination with temozolomide (TMZ). Materials and Methods Progression-free and overall survival rates were compared between patients with low or high expression of active GSK3β in the primary tumor. GBM cells and a mouse model were examined for the effects of GSK3β-inhibitory drugs, cimetidine, lithium, olanzapine, and valproate. The safety and efficacy of the cocktail of these drugs (CLOVA cocktail) in combination with TMZ were tested in the mouse model and in a clinical study for recurrent GBM patients. Results Activation of GSK3β in the tumor inversely correlated with patient survival as an independent prognostic factor. CLOVA cocktail significantly inhibited cell invasion and proliferation. The patients treated with CLOVA cocktail in combination with TMZ showed increased survival compared to the control group treated with TMZ alone. Conclusions Repositioning of the GSK3β-inhibitory drugs improved the prognosis of refractory GBM patients with active GSK3β in tumors. Combination of CLOVA cocktail and TMZ is a promising approach for recurrent GBM.


Neurologia Medico-chirurgica | 2016

Critical Neural Networks in Awake Surgery for Gliomas

Masashi Kinoshita; Katsuyoshi Miyashita; Taishi Tsutsui; Takuya Furuta; Mitsutoshi Nakada

From the embarrassing character commonly infiltrating eloquent brain regions, the surgical resection of glioma remains challenging. Owing to the recent development of in vivo visualization techniques for the human brain, white matter regions can be delineated using diffusion tensor imaging (DTI) as a routine clinical practice in neurosurgery. In confirmation of the results of DTI tractography, a direct electrical stimulation (DES) substantially influences the investigation of cortico-subcortical networks, which can be identified via specific symptoms elicited in the concerned white matter tracts (eg., the arcuate fascicle, superior longitudinal fascicles, inferior fronto-occipital fascicle, inferior longitudinal fascicle, frontal aslant tract, sensori-motor tracts, optic radiation, and so forth). During awake surgery for glioma using DES, it is important to identify the anatomo-functional structure of white matter tracts to identify the surgical boundaries of brain regions not only to achieve maximal resection of the glioma but also to maximally preserve quality of life. However, the risk exists that neurosurgeons may be misled by the inability of DTI to visualize the actual anatomy of the white matter fibers, resulting in inappropriate decisions regarding surgical boundaries. This review article provides information of the critical neuronal network that is necessary to identify and understand in awake surgery for glioma, with special references to white matter tracts and the author’s experiences.


Biochemical and Biophysical Research Communications | 2014

PCDH10 is required for the tumorigenicity of glioblastoma cells

Kanae Echizen; Mitsutoshi Nakada; Tomoatsu Hayashi; Hemragul Sabit; Takuya Furuta; Miyuki Nakai; Ryo Koyama-Nasu; Yukiko Nishimura; Kenzui Taniue; Yasuyuki Morishita; Shinji Hirano; Kenta Terai; Tomoki Todo; Yasushi Ino; Akitake Mukasa; Shunsaku Takayanagi; Ryohei Ohtani; Nobuhito Saito; Tetsu Akiyama

Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell-cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma.


Materials Chemistry Frontiers | 2018

Solid-state self-inclusion complexation behaviour of a pillar[5]arene-based host–guest conjugate

Tomoki Ogoshi; Takuya Furuta; Yukie Hamada; Takahiro Kakuta; Tada-aki Yamagishi

A host–guest conjugate consisting of a pillar[5]arene and an ethylene moiety containing a triazole group at one end and a perfluorooctyl group at the other end was synthesized. The host–guest conjugate displayed unusual real-time scale solid-state self-inclusion complexation behaviour. The host–guest conjugate formed a de-threaded supramolecular structure only in solution, even at high concentrations. However, heating the solid-state host–guest conjugate led to the formation of a self-inclusion complex structure at a real-time scale; at 100 °C, it took ca. 20 h to form the self-inclusion complex at the equilibrium state at a conversion of 85%. The self-inclusion complex converted to the de-threaded form at a real-time scale when it was stored in solvents with small molecules, which worked as competitive guests.

Collaboration


Dive into the Takuya Furuta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge