Takuya Imamura
Kyushu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takuya Imamura.
Genes to Cells | 2002
Kunio Shiota; Yasushi Kogo; Jun Ohgane; Takuya Imamura; Atsushi Urano; Koichiro Nishino; Satoshi Tanaka; Naka Hattori
Background: DNA methylation is involved in many gene functions such as gene‐silencing, X‐inactivation, imprinting and stability of the gene. We recently found that some CpG islands had a tissue‐dependent and differentially methylated region (T‐DMR) in normal tissues, raising the possibility that there may be more CpG islands capable of differential methylation.
Nature | 2016
Orie Hikabe; Nobuhiko Hamazaki; Go Nagamatsu; Yayoi Obata; Yuji Hirao; Norio Hamada; So Shimamoto; Takuya Imamura; Kinichi Nakashima; Mitinori Saitou; Katsuhiko Hayashi
The female germ line undergoes a unique sequence of differentiation processes that confers totipotency to the egg. The reconstitution of these events in vitro using pluripotent stem cells is a key achievement in reproductive biology and regenerative medicine. Here we report successful reconstitution in vitro of the entire process of oogenesis from mouse pluripotent stem cells. Fully potent mature oocytes were generated in culture from embryonic stem cells and from induced pluripotent stem cells derived from both embryonic fibroblasts and adult tail tip fibroblasts. Moreover, pluripotent stem cell lines were re-derived from the eggs that were generated in vitro, thereby reconstituting the full female germline cycle in a dish. This culture system will provide a platform for elucidating the molecular mechanisms underlying totipotency and the production of oocytes of other mammalian species in culture.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Junko Tomikawa; Yoshihisa Uenoyama; Makiko Ozawa; Tatsuya Fukanuma; Kenji Takase; Teppei Goto; Hitomi Abe; Nahoko Ieda; Shiori Minabe; Chikaya Deura; Naoko Inoue; Makoto Sanbo; Koichi Tomita; Masumi Hirabayashi; Satoshi Tanaka; Takuya Imamura; Hiroaki Okamura; Kei-ichiro Maeda; Hiroko Tsukamura
This study aims to determine the epigenetic mechanism regulating Kiss1 gene expression in the anteroventral periventricular nucleus (AVPV) to understand the mechanism underlying estrogen-positive feedback action on gonadotropin-releasing hormone/gonadotropin surge. We investigated estrogen regulation of the epigenetic status of the mouse AVPV Kiss1 gene locus in comparison with the arcuate nucleus (ARC), in which Kiss1 expression is down-regulated by estrogen. Histone of AVPV Kiss1 promoter region was highly acetylated, and estrogen receptor α was highly recruited at the region by estrogen. In contrast, the histone of ARC Kiss1 promoter region was deacetylated by estrogen. Inhibition of histone deacetylation up-regulated in vitro Kiss1 expression in a hypothalamic non–Kiss1-expressing cell line. Gene conformation analysis indicated that estrogen induced formation of a chromatin loop between Kiss1 promoter and the 3′ intergenic region, suggesting that the intergenic region serves to enhance estrogen-dependent Kiss1 expression in the AVPV. This notion was proved, because transgenic reporter mice with a complete Kiss1 locus sequence showed kisspeptin neuron-specific GFP expression in both the AVPV and ARC, but the deletion of the 3′ region resulted in greatly reduced GFP expression only in the AVPV. Taken together, these results demonstrate that estrogen induces recruitment of estrogen receptor α and histone acetylation in the Kiss1 promoter region of the AVPV and consequently enhances chromatin loop formation of Kiss1 promoter and Kiss1 gene enhancer, resulting in an increase in AVPV-specific Kiss1 gene expression. These results indicate that epigenetic regulation of the Kiss1 gene is involved in estrogen-positive feedback to generate the gonadotropin-releasing hormone/gonadotropin surge.
BMC Genomics | 2014
Masahiro Uesaka; Osamu Nishimura; Yasuhiro Go; Kinichi Nakashima; Kiyokazu Agata; Takuya Imamura
BackgroundThe majority of non-coding RNAs (ncRNAs) involved in mRNA metabolism in mammals have been believed to downregulate the corresponding mRNA expression level in a pre- or post-transcriptional manner by forming short or long ncRNA-mRNA duplex structures. Information on non-duplex-forming long ncRNAs is now also rapidly accumulating. To examine the directional properties of transcription at the whole-genome level, we performed directional RNA-seq analysis of mouse and chimpanzee tissue samples.ResultsWe found that there is only about 1% of the genome where both the top and bottom strands are utilized for transcription, suggesting that RNA-RNA duplexes are not abundantly formed. Focusing on transcription start sites (TSSs) of protein-coding genes revealed that a significant fraction of them contain switching-points that separate antisense- and sense-biased transcription, suggesting that head-to-head transcription is more prevalent than previously thought. More than 90% of head-to-head type promoters contain CpG islands. Moreover, CCG and CGG repeats are significantly enriched in the upstream regions and downstream regions, respectively, of TSSs located in head-to-head type promoters. Genes with tissue-specific promoter-associated ncRNAs (pancRNAs) show a positive correlation between the expression of their pancRNA and mRNA, which is in accord with the proposed role of pancRNA in facultative gene activation, whereas genes with constitutive expression generally lack pancRNAs.ConclusionsWe propose that single-stranded ncRNA resulting from head-to-head transcription at GC-rich sequences regulates tissue-specific gene expression.
Development | 2015
Nobuhiko Hamazaki; Masahiro Uesaka; Kinichi Nakashima; Kiyokazu Agata; Takuya Imamura
In mice, zygotic activation occurs for a wide variety of genes, mainly at the 2-cell stage. Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators of gene expression. In this study, directional RNA-seq of MII oocytes and 2-cell embryos identified more than 1000 divergently transcribed lncRNA/mRNA gene pairs. Expression of these bidirectional promoter-associated noncoding RNAs (pancRNAs) was strongly associated with the upregulation of their cognate genes. Conversely, knockdown of three abundant pancRNAs led to reduced mRNA expression, accompanied by sustained DNA methylation even in the presence of enzymes responsible for DNA demethylation. In particular, microinjection of siRNA against the abundant pancRNA partner of interleukin 17d (Il17d) mRNA at the 1-cell stage caused embryonic lethality, which was rescued by supplying IL17D protein in vitro at the 4-cell stage. Thus, this novel class of lncRNAs can modulate the transcription machinery in cis to activate zygotic genes and is important for preimplantation development. Highlighted article: During zygotic gene activation in the early mouse embryo, promoter-associated noncoding RNAs can promote expression of their partner mRNAs, which may be important for normal development.
Cell Reports | 2015
Keita Tsujimura; Koichiro Irie; Hideyuki Nakashima; Yoshihiro Egashira; Yoichiro Fukao; Masayuki Fujiwara; Masayuki Itoh; Masahiro Uesaka; Takuya Imamura; Yasukazu Nakahata; Yui Yamashita; Takaya Abe; Shigeo Takamori; Kinichi Nakashima
Rett syndrome (RTT) is a neurodevelopmental disorder caused by MECP2 mutations. Although emerging evidence suggests that MeCP2 deficiency is associated with dysregulation of mechanistic target of rapamycin (mTOR), which functions as a hub for various signaling pathways, the mechanism underlying this association and the molecular pathophysiology of RTT remain elusive. We show here that MeCP2 promotes the posttranscriptional processing of particular microRNAs (miRNAs) as a component of the microprocessor Drosha complex. Among the MeCP2-regulated miRNAs, we found that miR-199a positively controls mTOR signaling by targeting inhibitors for mTOR signaling. miR-199a and its targets have opposite effects on mTOR activity, ameliorating and inducing RTT neuronal phenotypes, respectively. Furthermore, genetic deletion of miR-199a-2 led to a reduction of mTOR activity in the brain and recapitulated numerous RTT phenotypes in mice. Together, these findings establish miR-199a as a critical downstream target of MeCP2 in RTT pathogenesis by linking MeCP2 with mTOR signaling.
Journal of Biological Chemistry | 2011
Junko Tomikawa; Hiroko Shimokawa; Masahiro Uesaka; Naoki Yamamoto; Yuji Mori; Hiroko Tsukamura; Kei-ichiro Maeda; Takuya Imamura
Background: Noncoding RNAs (ncRNAs) can alter epigenetic processes, mostly causing gene repression. Results: Antisense promoter-associated ncRNAs (pancRNAs) were associated with active chromatin marks at Nefl and Vim promoters. Forced expression and knockdown of these pancRNAs caused DNA demethylation and methylation, respectively. Conclusion: pancRNAs act in cis as a single-stranded form. Significance: Orientation of pancRNA is important for epigenetic modifications consistent with open chromatin structure. A growing number of noncoding RNAs (ncRNAs) are thought to be involved in sequence-specific alterations of epigenetic processes, mostly causing gene repression. In this study, promoter-associated ncRNAs (pancRNAs >200 nucleotides in size) that were endogenously generated from the sense strand at Map2b, antisense strand at Nefl, and both strands at Vim were investigated regarding their epigenetic potential as positive or negative regulators in rat pheochromocytoma (PC12) and fibroblast (normal rat kidney) cell lines. The respective antisense pancRNAs were associated with several active chromatin marks at the Nefl and Vim promoters. Forced expression of fragments expressing the antisense pancRNAs caused sequence-specific DNA demethylation, whereas a decrease of expression induced methylation of the same sequences. In contrast, perturbing the expression of the two sense pancRNAs did not change the DNA methylation status. These results suggest that a fraction of naturally occurring ncRNAs acts in cis as a single-stranded form and that the transcriptional orientation of pancRNA is important for the establishment of sequence-specific epigenetic modifications consistent with open chromatin structure.
BMC Molecular Biology | 2004
Takuya Imamura; Thi My Anh Neildez; Catherine Thenevin; Andras Paldi
BackgroundPoly (ADP-ribosyl)ation is a covalent modification of many nuclear proteins. It has a strong chromatin modifying potential involved in DNA repair, transcription and replication. Its role during preimplantation development is unknown.ResultsWe have observed strong but transient synthesis of poly ADP-ribose polymers on decondensing chromosomes of fertilized and parthenogenetically activated mouse oocytes. Inhibition of this transient upregulation with a specific enzyme inhibitor, 3-aminobenzamide, has long-term effects on the postimplantation development of the embryos. In addition, inhibition of poly (ADP-ribosyl)ation at the 4–8 cell stage selectively blocks morula compaction.ConclusionThese observations suggest that poly (ADP-ribosyl)ation is involved in the epigenetic chromatin remodeling in the zygote.
Philosophical Transactions of the Royal Society B | 2014
Takuya Imamura; Masahiro Uesaka; Kinichi Nakashima
In the mammalian brain, epigenetic mechanisms are clearly involved in the regulation of self-renewal of neural stem cells and the derivation of their descendants, i.e. neurons, astrocytes and oligodendrocytes, according to the developmental timing and the microenvironment, the ‘niche’. Interestingly, local epigenetic changes occur, concomitantly with genome-wide level changes, at a set of gene promoter regions for either down- or upregulation of the gene. In addition, intergenic regions also sensitize the availability of epigenetic modifiers, which affects gene expression through a relatively long-range chromatinic interaction with the transcription regulatory machineries including non-coding RNA (ncRNA) such as promoter-associated ncRNA and enhancer ncRNA. We show that such an epigenetic landscape in a neural cell is statically but flexibly formed together with a variable combination of generally and locally acting nuclear molecules including master transcription factors and cell-cycle regulators. We also discuss the possibility that revealing the epigenetic regulation by the local DNA–RNA–protein assemblies would promote methodological innovations, e.g. neural cell reprogramming, engineering and transplantation, to manipulate neuronal and glial cell fates for the purpose of medical use of these cells.
Journal of Physiological Sciences | 2011
Kinuyo Iwata; Mika Kinoshita; Shunji Yamada; Takuya Imamura; Yoshihisa Uenoyama; Hiroko Tsukamura; Kei-ichiro Maeda
Uncontrolled type 1 diabetes leads to hyperphagia and severe ketosis. This study was conducted to test the hypothesis that ketone bodies act on the hindbrain as a starvation signal to induce diabetic hyperphagia. Injection of an inhibitor of monocarboxylate transporter 1, a ketone body transporter, into the fourth ventricle normalized the increase in food intake in streptozotocin (STZ)-induced diabetic rats. Blockade of catecholamine synthesis in the hypothalamic paraventricular nucleus (PVN) also restored food intake to normal levels in diabetic animals. On the other hand, hindbrain injection of the ketone body induced feeding, hyperglycemia, and fatty acid mobilization via increased sympathetic activity and also norepinephrine release in the PVN. This result provides evidence that hyperphagia in STZ-induced type 1 diabetes is signaled by a ketone body sensed in the hindbrain, and mediated by noradrenergic inputs to the PVN.