Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takuya Ito is active.

Publication


Featured researches published by Takuya Ito.


The Plant Cell | 2003

Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling

Hiroshi Abe; Takeshi Urao; Takuya Ito; Motoaki Seki; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

In Arabidopsis, the induction of a dehydration-responsive gene, rd22, is mediated by abscisic acid (ABA). We reported previously that MYC and MYB recognition sites in the rd22 promoter region function as cis-acting elements in the drought- and ABA-induced gene expression of rd22. bHLH- and MYB-related transcription factors, rd22BP1 (renamed AtMYC2) and AtMYB2, interact specifically with the MYC and MYB recognition sites, respectively, in vitro and activate the transcription of the β-glucuronidase reporter gene driven by the MYC and MYB recognition sites in Arabidopsis leaf protoplasts. Here, we show that transgenic plants overexpressing AtMYC2 and/or AtMYB2 cDNAs have higher sensitivity to ABA. The ABA-induced gene expression of rd22 and AtADH1 was enhanced in these transgenic plants. Microarray analysis of the transgenic plants overexpressing both AtMYC2 and AtMYB2 cDNAs revealed that several ABA-inducible genes also are upregulated in the transgenic plants. By contrast, a Ds insertion mutant of the AtMYC2 gene was less sensitive to ABA and showed significantly decreased ABA-induced gene expression of rd22 and AtADH1. These results indicate that both AtMYC2 and AtMYB2 proteins function as transcriptional activators in ABA-inducible gene expression under drought stress in plants.


Plant and Cell Physiology | 2009

Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis

Yasunari Fujita; Kazuo Nakashima; Takuya Yoshida; Takeshi Katagiri; Satoshi Kidokoro; Norihito Kanamori; Taishi Umezawa; Miki Fujita; Kyonoshin Maruyama; Kanako Ishiyama; Masatomo Kobayashi; Shoko Nakasone; Kohji Yamada; Takuya Ito; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

Responses to water stress are thought to be mediated by transcriptional regulation of gene expression via reversible protein phosphorylation events. Previously, we reported that bZIP (basic-domain leucine zipper)-type AREB/ABF (ABA-responsive element-binding protein/factor) transcription factors are involved in ABA signaling under water stress conditions in Arabidopsis. The AREB1 protein is phosphorylated in vitro by ABA-activated SNF1-related protein kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). Consistent with this, we now show that SRK2D/E/I and AREB1 co-localize and interact in nuclei in planta. Our results show that unlike srk2d, srk2e and srk2i single and double mutants, srk2d srk2e srk2i (srk2d/e/i) triple mutants exhibit greatly reduced tolerance to drought stress and highly enhanced insensitivity to ABA. Under water stress conditions, ABA- and water stress-dependent gene expression, including that of transcription factors, is globally and drastically impaired, and jasmonic acid (JA)-responsive and flowering genes are up-regulated in srk2d/e/i triple mutants, but not in other single and double mutants. The down-regulated genes in srk2d/e/i and areb/abf triple mutants largely overlap in ABA-dependent expression, supporting the view that SRK2D/E/I regulate AREB/ABFs in ABA signaling in response to water stress. Almost all dehydration-responsive LEA (late embryogenesis abundant) protein genes and group-A PP2C (protein phosphatase 2C) genes are strongly down-regulated in the srk2d/e/i triple mutants. Further, our data show that these group-A PP2Cs, such as HAI1 and ABI1, interact with SRK2D. Together, our results indicate that SRK2D/E/I function as main positive regulators, and suggest that ABA signaling is controlled by the dual modulation of SRK2D/E/I and group-A PP2Cs.


Plant Physiology | 2005

ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs

Tomo Yoshida; Nobutaka Kitahata; Takashi Kuromori; Takuya Ito; Tadao Asami; Kazuo Shinozaki; Takashi Hirayama

The phytohormone abscisic acid (ABA) regulates physiologically important developmental processes and stress responses. Previously, we reported on Arabidopsis (Arabidopsis thaliana) L. Heynh. ahg mutants, which are hypersensitive to ABA during germination and early growth. Among them, ABA-hypersensitive germination3 (ahg3) showed the strongest ABA hypersensitivity. In this study, we found that the AHG3 gene is identical to AtPP2CA, which encodes a protein phosphatase 2C (PP2C). Although AtPP2CA has been reported to be involved in the ABA response on the basis of results obtained by reverse-genetics approaches, its physiological relevance in the ABA response has not been clarified yet. We demonstrate in vitro and in vivo that the ahg3-1 missense mutation causes the loss of PP2C activity, providing concrete confirmation that this PP2C functions as a negative regulator in ABA signaling. Furthermore, we compared the effects of disruption mutations of eight structurally related PP2C genes of Arabidopsis, including ABI1, ABI2, HAB1, and HAB2, and found that the disruptant mutant of AHG3/AtPP2CA had the strongest ABA hypersensitivity during germination, but it did not display any significant phenotypes in adult plants. Northern-blot analysis clearly showed that AHG3/AtPP2CA is the most active among those PP2C genes in seeds. These results suggest that AHG3/AtPP2CA plays a major role among PP2Cs in the ABA response in seeds and that the functions of those PP2Cs overlap, but their unique tissue- or development-specific expression confers distinct and indispensable physiological functions in the ABA response.


The Plant Cell | 2007

Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development.

Takuya Ito; Noriko Nagata; Yoshu Yoshiba; Masaru Ohme-Takagi; Hong Ma; Kazuo Shinozaki

The Arabidopsis thaliana MALE STERILITY1 (MS1) gene encodes a nuclear protein with Leu zipper–like and PHD-finger motifs and is important for postmeiotic pollen development. Here, we examined MS1 function using both cell biological and molecular biological approaches. We introduced a fusion construct of MS1 and a transcriptional repression domain (MS1-SRDX) into wild-type Arabidopsis, and the transgenic plants showed a semisterile phenotype similar to that of ms1. Since the repression domain can convert various kinds of transcriptional activators to dominant repressors, this suggested that MS1 functioned as a transcriptional activator. The Leu zipper–like region and the PHD motif were required for the MS1 function. Phenotypic analysis of the ms1 mutant and the MS1-SRDX transgenic Arabidopsis indicated that MS1 was involved in formation of pollen exine and pollen cytosolic components as well as tapetum development. Next, we searched for MS1 downstream genes by analyzing publicly available microarray data and identified 95 genes affected by MS1. Using a transgenic ms1 plant showing dexamethasone-inducible recovery of fertility, we further examined whether these genes were immediately downstream of MS1. From these results, we discuss a role of MS1 in pollen and tapetum development and the conservation of MS1 function in flowering plants.


Nucleic Acids Research | 2004

RARGE: a large-scale database of RIKEN Arabidopsis resources ranging from transcriptome to phenome

Tetsuya Sakurai; Masakazu Satou; Kenji Akiyama; Kei Iida; Motoaki Seki; Takashi Kuromori; Takuya Ito; Akihiko Konagaya; Tetsuro Toyoda; Kazuo Shinozaki

The RIKEN Arabidopsis Genome Encyclopedia (RARGE) database houses information on biological resources ranging from transcriptome to phenome, including RIKEN Arabidopsis full-length (RAFL) complementary DNAs (cDNAs), their promoter regions, Dissociation (Ds) transposon-tagged lines and expression data from microarray experiments. RARGE provides tools for searching by resource code, sequence homology or keyword, and rapid access to detailed information on the resources. We have isolated 245 946 RAFL cDNA clones and collected 11 933 transposon-tagged lines, which are available from the RIKEN Bioresource Center and are stored in RARGE. The RARGE web interface can be accessed at http://rarge.gsc.riken.jp/. Additionally, we report 90 000 new RAFL cDNA clones here.


Plant Molecular Biology | 2007

Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development

Reiko Motohashi; Takanori Yamazaki; Fumiyoshi Myouga; Takuya Ito; Koichi Ito; Masakazu Satou; Masatomo Kobayashi; Noriko Nagata; Shigeo Yoshida; Akitomo Nagashima; Kan Tanaka; Seiji Takahashi; Kazuo Shinozaki

To study the functions of nuclear genes involved in chloroplast development, we systematically analyzed albino and pale green Arabidopsis thaliana mutants by use of the Activator/Dissociation (Ac/Ds) transposon tagging system. In this study, we focused on one of these albino mutants, designated apg3-1 (for albino or pale green mutant 3). A gene encoding a ribosome release factor 1 (RF1) homologue was disrupted by the insertion of a Ds transposon into the APG3 gene; a T-DNA insertion into the same gene caused a similar phenotype (apg3-2). The APG3 gene (At3g62910) has 15 exons and encodes a protein (422-aa) with a transit peptide that functions in targeting the protein to chloroplasts. The amino acid sequence of APG3 showed 40.6% homology with an RF1 of Escherichia coli, and complementation analysis using the E. colirf1 mutant revealed that APG3 functions as an RF1 in E. coli, although complementation was not successful in the RF2-deficient (rf2) mutants of E. coli. These results indicate that the APG3 protein is an orthologue of E. coli RF1, and is essential for chloroplast translation machinery; it was accordingly named AtcpRF1. Since the chloroplasts of apg3-1 plants contained few internal thylakoid membranes, and chloroplast proteins related to photosynthesis were not detected by immunoblot analysis, AtcpRF1 is thought to be essential for chloroplast development.


Journal of Plant Research | 1998

Molecular Responses to Water Stress in Arabidopsis thaliana

Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki; Tsuyoshi Mizoguchi; Takeshi Urao; Takeshi Katagiri; Kazuo Nakashima; Hiroshi Abe; Kazuya Ichimura; Quian Liu; Tokihiko Nanjyo; Yuichi Uno; Satoshi Iuchi; Motoaki Seki; Takuya Ito; Takashi Hirayama; Koji Mikami

Plants respond and adapt to environmental changes including drought, high salinity and low temperature. abscisic acid (ABA) plays important roles in these stress responses. A number of plant genes are induced by water stress, such as drought, high salinity and low temperature, and are thought to function in the stress tolerance and responses of the plant. At least four signal transduction pathways control these genes inArabidopsis thaliana: two are ABA-dependent, and two are ABA-independent. Acis-acting element named DRE (Dehydration Responsive Element) is involved in one of the ABA-independent signal transduction pathways, and its DNA binding proteins have been characterized. Drought- and ABA-inducible MYC and MYB homologues are involved in ABA-responsive gene expression inarabidopsis. Roles of thesecis andtrans-acting factors in water stress responses are discussed. In addition, a number of genes for protein kinases, enzymes involved in phosphatidyl inositol metabolism (PI turnover) and transcription factors are also induced by water stress, and thought to be involved in the stress signal transduction cascades. Possible signaling processes in water stress response are discussed.


FEBS Letters | 1992

Highly conserved hexamer, octamer and nonamer motifs are positive cis-regulatory elements of the wheat histone H3 gene

Takuya Nakayama; Ayako Sakamoto; Ping Yang; Maki Minami; Yoshinobu Fujimoto; Takuya Ito; Masaki Iwabuchi

Base substitution mutations were introduced into the promoter region of the wheat histone H3 gene and promoter activity was assayed in stably transformed sunflower calli or in wheat protoplasts transfected transiently. At least four positive regulatory elements, a hexamer motif (ACGTCA). two octamer(‐like) motifs of a direct (CcCGGATC) and a reverse (aATCCGCG) form, and a nonamer motif (CATCCAACG) were identified within the ‐185 region of the H3 promoter. Analyses of the type I element (CC CC ) consisting of the hexamer and reverse‐oriented octamer motifs, and which is conserved in other plant histone genes as well, predicted the presence of an octamer‐binding protein(s).


Journal of Biological Chemistry | 2002

Vinexin β Regulates the Anchorage Dependence of ERK2 Activation Stimulated by Epidermal Growth Factor

Akira Suwa; Masaru Mitsushima; Takuya Ito; Masahiko Akamatsu; Kazumitsu Ueda; Teruo Amachi; Noriyuki Kioka

ERK is activated by soluble growth factors in adherent cells. However, activation of ERK is barely detectable and not sufficient for cell proliferation in non-adherent cells. Here, we show that exogenous expression of vinexin β, a novel focal adhesion protein, allows anchorage-independent ERK2 activation stimulated by epidermal growth factor. In contrast, expression of vinexin β had no effect on ERK2 activation in adherent cells, suggesting that vinexin β regulates the anchorage dependence of ERK2 activation. Analyses using deletion mutants demonstrated that a linker region between the second and third SH3 domains of vinexin β, but not the SH3 domains, is required for this function of vinexin β. To evaluate the pathway regulating the anchorage dependence of ERK2 activation, we used a dominant-negative mutant of p21-activated kinase (PAK) and a specific inhibitor (H89) of cAMP-dependent protein kinase (PKA) because PAK and PKA are known to regulate the anchorage dependence of ERK2 activation. The dominant-negative mutant of PAK suppressed the anchorage-independent ERK2 activation induced by expression of vinexin β. The dominant-negative mutant of vinexin β inhibited the anchorage-independent ERK2 activation induced by the PKA inhibitor. Together, these observations indicate that vinexin β plays a key role in regulating the anchorage dependence of ERK2 activation through PKA-PAK signaling.


Experimental Cell Research | 2010

Crucial role of vinexin for keratinocyte migration in vitro and epidermal wound healing in vivo.

Noriyuki Kioka; Takuya Ito; Hiroshi Yamashita; Natsuko Uekawa; Tsutomu Umemoto; Soh Motoyoshi; Hiroshi Imai; Kenzo Takahashi; Hideto Watanabe; Masayasu Yamada; Kazumitsu Ueda

In the process of tissue injury and repair, epithelial cells rapidly migrate and form epithelial sheets. Vinexin is a cytoplasmic molecule of the integrin-containing cell adhesion complex localized at focal contacts in vitro. Here, we investigated the roles of vinexin in keratinocyte migration in vitro and wound healing in vivo. Vinexin knockdown using siRNA delayed migration of both HaCaT human keratinocytes and A431 epidermoid carcinoma cells in scratch assay but did not affect cell proliferation. Induction of cell migration by scratching the confluent monolayer culture of these cells activated both EGFR and ERK, and their inhibitors AG1478 and U0126 substantially suppressed scratch-induced keratinocyte migration. Vinexin knockdown in these cells inhibited the scratch-induced activation of EGFR, but not that of ERK, suggesting that vinexin promotes cell migration via activation of EGFR. We further generated vinexin (-/-) mice and isolated their keratinocytes. They similarly showed slow migration in scratch assay. Furthermore, vinexin (-/-) mice exhibited a delay in cutaneous wound healing in both the back skin and tail without affecting the proliferation of keratinocytes. Together, these results strongly suggest a crucial role of vinexin in keratinocyte migration in vitro and cutaneous wound healing in vivo.

Collaboration


Dive into the Takuya Ito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Shibata

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge