Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tal I. Arnon is active.

Publication


Featured researches published by Tal I. Arnon.


Nature | 2001

Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells.

Ofer Mandelboim; Niva Lieberman; Marianna Lev; Lada Paul; Tal I. Arnon; Yuri Bushkin; Daniel M. Davis; Jack L. Strominger; Jonathan W. Yewdell; Angel Porgador

Natural killer (NK) cells destroy virus-infected and tumour cells, apparently without the need for previous antigen stimulation. In part, target cells are recognized by their diminished expression of major histocompatibility complex (MHC) class I molecules, which normally interact with inhibitory receptors on the NK cell surface. NK cells also express triggering receptors that are specific for non-MHC ligands; but the nature of the ligands recognized on target cells is undefined. NKp46 is thought to be the main activating receptor for human NK cells. Here we show that a soluble NKp46–immunoglobulin fusion protein binds to both the haemagglutinin of influenza virus and the haemagglutinin–neuraminidase of parainfluenza virus. In a substantial subset of NK cells, recognition by NKp46 is required to lyse cells expressing the corresponding viral glycoproteins. The binding requires the sialylation of NKp46 oligosaccharides, which is consistent with the known sialic binding capacity of the viral glycoproteins. These findings indicate how NKp46-expressing NK cells may recognize target cells infected by influenza or parainfluenza without the decreased expression of target-cell MHC class I protein.


Nature Immunology | 2006

Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1

Roi Gazit; Raizy Gruda; Moran Elboim; Tal I. Arnon; Gil Katz; Hagit Achdout; Jacob Hanna; Udi Qimron; Guy Landau; Evgenia Greenbaum; Zichria Zakay-Rones; Angel Porgador; Ofer Mandelboim

The elimination of viruses and tumors by natural killer cells is mediated by specific natural killer cell receptors. To study the in vivo function of a principal activating natural killer cell receptor, NCR1 (NKp46 in humans), we replaced the gene encoding this receptor (Ncr1) with a green fluorescent protein reporter cassette. There was enhanced spread of certain tumors in 129/Sv but not C57BL/6 Ncr1gfp/gfp mice, and influenza virus infection was lethal in both 129/Sv and C57BL/6 Ncr1gfp/gfp mice. We noted accumulation of natural killer cells at the site of influenza infection by tracking the green fluorescent protein. Our results demonstrate a critical function for Ncr1 in the in vivo eradication of influenza virus.


European Journal of Immunology | 2001

Recognition of viral hemagglutinins by NKp44 but not by NKp30

Tal I. Arnon; Marina Lev; Gil Katz; Yehudit Chernobrov; Angel Porgador; Ofer Mandelboim

Natural killer (NK) cells destroy virus‐infected and tumor cells without prior antigen stimulation. The NK cell cytotoxicity is regulated in large part by the expression of NK cell receptors that are able to bind major histocompatibility complex (MHC) class I glycoproteins. NK cells also express lysis triggering receptors specific for non‐MHC ligands, including NKp30, NKp44, NKp46 and CD16. However, the nature of their ligands, recognized on target cells, is undefined. We have recently shown that the NKp46 protein, but not the CD16 protein, recognizes the hemagglutinin (HA) of influenza virus (IV) and the hemagglutinin‐neuraminidase (HN) of Sendai virus (SV), and that the recognition of HA from IV requires the sialylation of NKp46 oligosaccharides. We have also demonstrated that binding of NKp46 to HA of IV is required for lysis of cells expressing the corresponding glycoproteins by a substantial subset of NK clones. Here we show that NKp44, but not NKp30, can also recognize the HA of both IV and SV and that the recognition of IV HA requires the sialylation of the NKp44 receptor in a similar way to that of NKp46. SV infection of 721.221 cells expressing MHC class I proteinsresulted in the abrogation of the inhibition by NK clones expressing high levels of NKp44. In addition, the binding of NKp44 to HA improves the ability of some NK clones to lyse IV infected cells.


Nature Immunology | 2005

Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus

Tal I. Arnon; Hagit Achdout; Ofer Levi; Gal Markel; Nivin Saleh; Gil Katz; Roi Gazit; Tsufit Gonen-Gross; Jacob Hanna; Efrat Nahari; Angel Porgador; Alik Honigman; Bodo Plachter; Dror Mevorach; Dana G. Wolf; Ofer Mandelboim

Human cytomegalovirus, a chief pathogen in immunocompromised people, can persist in a healthy immunocompetent host throughout life without being eliminated by the immune system. Here we show that pp65, the main tegument protein of human cytomegalovirus, inhibited natural killer cell cytotoxicity by an interaction with the activating receptor NKp30. This interaction was direct and specific, leading to dissociation of the linked CD3ζ from NKp30 and, consequently, to reduced killing. Thus, pp65 is a ligand for the NKp30 receptor and demonstrates a unique mechanism by which an intracellular viral protein causes general suppression of natural killer cell cytotoxicity by specific interaction with an activating receptor.


Journal of Immunology | 2002

CD66a Interactions Between Human Melanoma and NK Cells: A Novel Class I MHC-Independent Inhibitory Mechanism of Cytotoxicity

Gal Markel; Niva Lieberman; Gil Katz; Tal I. Arnon; Michal Lotem; Olga Drize; Richard S. Blumberg; Erez Bar-Haim; Reuven Mader; Lea Eisenbach; Ofer Mandelboim

NK cells are able to kill virus-infected and tumor cells via a panel of lysis receptors. Cells expressing class I MHC proteins are protected from lysis primarily due to the interactions of several families of NK receptors with both classical and nonclassical class I MHC proteins. In this study we show that a class I MHC-deficient melanoma cell line (1106mel) is stained with several Ig-fused lysis receptors, suggesting the expression of the appropriate lysis ligands. Surprisingly, however, this melanoma line was not killed by CD16-negative NK clones. The lack of killing is shown to be the result of homotypic CD66a interactions between the melanoma line and the NK cells. Furthermore, 721.221 cells expressing the CD66a protein were protected from lysis by YTS cells and by NK cells expressing the CD66a protein. Redirected lysis experiments demonstrated that the strength of the inhibitory effect is correlated with the levels of CD66a expression. Finally, the expression of CD66a protein was observed on NK cells derived from patients with malignant melanoma. These findings suggest the existence of a novel class I MHC-independent inhibitory mechanism of human NK cell cytotoxicity. This may be a mechanism that is used by some of the class I MHC-negative melanoma cells to evade attack by CD66a-positive NK cells.


Journal of Clinical Investigation | 2004

Novel APC-like properties of human NK cells directly regulate T cell activation

Jacob Hanna; Tsufit Gonen-Gross; Jonathan Fitchett; Tony Rowe; Mark Daniels; Tal I. Arnon; Roi Gazit; Aviva Joseph; Karoline W. Schjetne; Alexander Steinle; Angel Porgador; Dror Mevorach; Debra Goldman-Wohl; Simcha Yagel; Michael Labarre; Jane H. Buckner; Ofer Mandelboim

Initiation of the adaptive immune response is dependent on the priming of naive T cells by APCs. Proteomic analysis of unactivated and activated human NK cell membrane-enriched fractions demonstrated that activated NK cells can efficiently stimulate T cells, since they upregulate MHC class II molecules and multiple ligands for TCR costimulatory molecules. Furthermore, by manipulating antigen administration, we show that NK cells possess multiple independent unique pathways for antigen uptake. These results highlight NK cell-mediated cytotoxicity and specific ligand recognition by cell surface-activating receptors on NK cells as unique mechanisms for antigen capturing and presentation. In addition, we analyzed the T cell-activating potential of human NK cells derived from different clinical conditions, such as inflamed tonsils and noninfected and CMV-infected uterine decidual samples, and from transporter-associated processing antigen 2-deficient patients. This in vivo analysis revealed that proinflammatory, but not immune-suppressive, microenvironmental requirements can selectively dictate upregulation of T cell-activating molecules on NK cells. Taken together, these observations offer new and unexpected insights into the direct interactions between NK and T cells and suggest novel APC-like activating functions for human NK cells.


Journal of Immunology | 2001

Recognition of HLA-Cw4 but Not HLA-Cw6 by the NK Cell Receptor Killer Cell Ig-Like Receptor Two-Domain Short Tail Number 4

Gil Katz; Gal Markel; Sa’ar Mizrahi; Tal I. Arnon; Ofer Mandelboim

NK cells are cytotoxic to virus-infected and tumor cells that have lost surface expression of class I MHC proteins. Target cell expression of class I MHC proteins inhibits NK cytotoxicity through binding to inhibitory NK receptors. In contrast, a similar family of activating NK receptors, characterized by the presence of a charged residue in their transmembrane portion and a truncated cytoplasmic tail, augment lysis by NK cells when ligated by an appropriate class I MHC protein. However, the class I MHC specificity of many of these activating NK receptors is still unknown. Here, we show enhanced lysis of HLA-Cw4 but not HLA-Cw6-expressing cells, by a subset of NK clones. This subset may express killer cell Ig-like receptor two-domain short tail number 4 (KIR2DS4), as suggested by staining with various mAb. It is still possible, however, that these clones may express receptors other than KIR2DS4 that might recognize HLA-Cw4. Binding of KIR2DS4-Ig fusion protein to cells expressing HLA-Cw4 but not to those expressing HLA-Cw6 was also observed. The binding of KIR2DS4-Ig to HLA-Cw4 is weaker than that of killer cell Ig-like receptor two-domain long tail number 1 (KIR2DL1)-Ig fusion protein; however, such weak recognition is capable of inhibiting lysis by an NK transfectant expressing a chimeric molecule of KIR2DS4 fused to the transmembrane and cytoplasmic portion of KIR2DL1. Residue α14 is shown to be important in the KIR2DS4 binding to HLA-Cw4. Implications of the role of the activating NK receptors in immunosurveillance are discussed.


Nature | 2012

Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress

Tal I. Arnon; Robert M. Horton; Irina L. Grigorova; Jason G. Cyster

The splenic marginal zone is a unique microenvironment where resident immune cells are exposed to the open blood circulation. Even though it has an important role in responses against blood-borne antigens, lymphocyte migration in the marginal zone has not been intravitally visualized due to challenges associated with achieving adequate imaging depth in this abdominal organ. Here we develop a two-photon microscopy procedure to study marginal zone and follicular B-cell movement in the live mouse spleen. We show that marginal zone B cells are highly motile and exhibit long membrane extensions. Marginal zone B cells shuttle between the marginal zone and follicles with at least one-fifth of the cells exchanging between compartments per hour, a behaviour that explains their ability to deliver antigens rapidly from the open blood circulation to the secluded follicles. Follicular B cells also transit from follicles to the marginal zone, but unlike marginal zone B cells, they fail to undergo integrin-mediated adhesion, become caught in fluid flow and are carried into the red pulp. Follicular B-cell egress via the marginal zone is sphingosine-1-phosphate receptor-1 (S1PR1)-dependent. This study shows that marginal zone B cells migrate continually between marginal zone and follicles and establishes the marginal zone as a site of S1PR1-dependent B-cell exit from follicles. The results also show how adhesive differences of similar cells critically influence their behaviour in the same microenvironment.


Science | 2011

GRK2-Dependent S1PR1 Desensitization Is Required for Lymphocytes to Overcome Their Attraction to Blood

Tal I. Arnon; Ying Xu; Charles G. Lo; Trung Pham; Jinping An; Shaun R. Coughlin; Gerald W. Dorn; Jason G. Cyster

A molecular mechanism that allows lymphocytes to migrate against a chemokine gradient is revealed. Lymphocytes egress from lymphoid organs in response to sphingosine-1-phosphate (S1P); minutes later they migrate from blood into tissue against the S1P gradient. The mechanisms facilitating cell movement against the gradient have not been defined. Here, we show that heterotrimeric guanine nucleotide–binding protein–coupled receptor kinase-2 (GRK2) functions in down-regulation of S1P receptor-1 (S1PR1) on blood-exposed lymphocytes. T and B cell movement from blood into lymph nodes is reduced in the absence of GRK2 but is restored in S1P-deficient mice. In the spleen, B cell movement between the blood-rich marginal zone and follicles is disrupted by GRK2 deficiency and by mutation of an S1PR1 desensitization motif. Moreover, delivery of systemic antigen into follicles is impaired. Thus, GRK2-dependent S1PR1 desensitization allows lymphocytes to escape circulatory fluids and migrate into lymphoid tissues.


Journal of Immunology | 2004

MHC Class I-Independent Recognition of NK-Activating Receptor KIR2DS4

Gil Katz; Roi Gazit; Tal I. Arnon; Tsufit Gonen-Gross; Gabi Tarcic; Gal Markel; Raizy Gruda; Hagit Achdout; Olga Drize; Sharon Merims; Ofer Mandelboim

Natural killer cells are capable of killing tumor and virus-infected cells. This killing is mediated primarily via the natural cytotoxicity receptors, including NKp46, NKp44, NKp30, and by the NKG2D receptor. Killer cell Ig-like receptors (KIRs) are mainly involved in inhibiting NK killing (inhibitory KIRs) via interaction with MHC class I molecules. Some KIRs, however, have been found to enhance NK killing when interacting with MHC class I molecules (activating KIRs). We have previously demonstrated that KIR2DS4, an activating KIR, recognizes the HLA-Cw4 protein. The interaction observed was weak and highly restricted to HLA-Cw4 only. These findings prompted us to check whether KIR2DS4 might have additional ligand(s). In this study, we show that KIR2DS4 is able to also interact with a non-class I MHC protein expressed on melanoma cell lines and on a primary melanoma. This interaction is shown to be both specific and functional. Importantly, site-directed mutagenesis analysis reveals that the amino acid residues involved in the recognition of this novel ligand are different from those interacting with HLA-Cw4. These results may shed new light on the function of activating KIRs and their relevance in NK biology.

Collaboration


Dive into the Tal I. Arnon's collaboration.

Top Co-Authors

Avatar

Ofer Mandelboim

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gil Katz

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Angel Porgador

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Hagit Achdout

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Roi Gazit

Hadassah Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tsufit Gonen-Gross

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Jacob Hanna

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Niva Lieberman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Raizy Gruda

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge