Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tali Bitan is active.

Publication


Featured researches published by Tali Bitan.


Brain Research | 2007

The role of the basal ganglia and cerebellum in language processing

James R. Booth; Lydia Wood; Dong Lu; James C. Houk; Tali Bitan

The roles of the cerebellum and basal ganglia have typically been confined in the literature to motor planning and control. However, mounting evidence suggests that these structures are involved in more cognitive domains such as language processing. In the current study, we looked at effective connectivity (the influence that one brain region has on another) of the cerebellum and basal ganglia with regions thought to be involved in phonological processing, i.e. left inferior frontal gyrus and left lateral temporal cortex. We analyzed functional magnetic resonance imaging data (fMRI) obtained during a rhyming judgment task in adults using dynamic causal modeling (DCM). The results showed that the cerebellum has reciprocal connections with both left inferior frontal gyrus and left lateral temporal cortex, whereas the putamen has unidirectional connections into these two brain regions. Furthermore, the connections between cerebellum and these phonological processing areas were stronger than the connections between putamen and these areas. This pattern of results suggests that the putamen and cerebellum may have distinct roles in language processing. Based on research in the motor planning and control literature, we argue that the putamen engages in cortical initiation while the cerebellum amplifies and refines this signal to facilitate correct decision making.


The Journal of Neuroscience | 2005

Shifts of Effective Connectivity within a Language Network during Rhyming and Spelling

Tali Bitan; James R. Booth; Janet Choy; Douglas D. Burman; Darren R. Gitelman; M.-Marsel Mesulam

We used functional magnetic resonance imaging to examine task-specific modulations of effective connectivity within a left-hemisphere language network during spelling and rhyming judgments on visually presented words. We identified sites showing task-specific activations for rhyming in the lateral temporal cortex (LTC) and for spelling in the intraparietal sulcus (IPS). The inferior frontal gyrus (IFG) and fusiform gyrus were engaged by both tasks. Dynamic causal modeling showed that each task preferentially strengthened modulatory influences converging on its task-specific site (LTC for rhyming, IPS for spelling). These remarkably selective and symmetrical findings demonstrate that the nature of the behavioral task dynamically shifts the locus of integration (or convergence) to the network component specialized for that task. Furthermore, they suggest that the role of the task-selective areas is to provide a differential synthesis of incoming information rather than providing differential control signals influencing the activity of other network components. Our findings also showed that switching tasks led to changes in the target area influenced by the IFG, suggesting that the IFG may play a pivotal role in setting the cognitive context for each task. We propose that task-dependent shifts in effective connectivity are likely to be mediated through top-down modulations from the IFG to the task-selective regions in a way that differentially enhances their sensitivity to incoming word-form information.


Neuropsychologia | 2008

Sex Differences in Neural Processing of Language Among Children

Douglas D. Burman; Tali Bitan; James R. Booth

Why females generally perform better on language tasks than males is unknown. Sex differences were here identified in children (ages 9-15) across two linguistic tasks for words presented in two modalities. Bilateral activation in the inferior frontal and superior temporal gyri and activation in the left fusiform gyrus of girls was greater than in boys. Activation in the left inferior frontal and fusiform regions of girls was also correlated with linguistic accuracy irregardless of stimulus modality, whereas correlation with performance accuracy in boys depended on the modality of word presentation (either in visual or auditory association cortex). This pattern suggests that girls rely on a supramodal language network, whereas boys process visual and auditory words differently. Activation in the left fusiform region was additionally correlated with performance on standardized language tests in which girls performed better, additional evidence of its role in early sex differences for language.


Brain and Language | 2008

Effective brain connectivity in children with reading difficulties during phonological processing

Fan Cao; Tali Bitan; James R. Booth

Using Dynamic Causal Modeling (DCM) and functional magnetic resonance imaging (fMRI), we examined effective connectivity between three left hemisphere brain regions (inferior frontal gyrus, inferior parietal lobule, fusiform gyrus) and bilateral medial frontal gyrus in 12 children with reading difficulties (M age=12.4, range: 8.11-14.10) and 12 control children (M age=12.3, range: 8.9-14.11) during rhyming judgments to visually presented words. More difficult conflicting trials either had similar orthography but different phonology (e.g. pint-mint) or similar phonology but different orthography (e.g. jazz-has). Easier non-conflicting trials had similar orthography and phonology (e.g. dime-lime) or different orthography and phonology (e.g. staff-gain). The modulatory effect from left fusiform gyrus to left inferior parietal lobule was stronger in controls than in children with reading difficulties only for conflicting trials. Modulatory effects from left fusiform gyrus and left inferior parietal lobule to left inferior frontal gyrus were stronger for conflicting trials than for non-conflicting trials only in control children but not in children with reading difficulties. Modulatory effects from left inferior frontal gyrus to inferior parietal lobule, from medial frontal gyrus to left inferior parietal lobule, and from left inferior parietal lobule to medial frontal gyrus were positively correlated with reading skill only in control children. These findings suggest that children with reading difficulties have deficits in integrating orthography and phonology utilizing left inferior parietal lobule, and in engaging phonological rehearsal/segmentation utilizing left inferior frontal gyrus possibly through the indirect pathway connecting posterior to anterior language processing regions, especially when the orthographic and phonological information is conflicting.


Human Brain Mapping | 2006

Developmental and Skill Effects on the Neural Correlates of Semantic Processing to Visually Presented Words

Tai-Li Chou; James R. Booth; Tali Bitan; Douglas D. Burman; Jordan D. Bigio; Nadia E. Cone; Dong Lu; Fan Cao

Functional magnetic resonance imaging (fMRI) was used to explore the neural correlates of semantic judgments to visual words in a group of 9‐ to 15‐year‐old children. Subjects were asked to indicate if word pairs were related in meaning. Consistent with previous findings in adults, children showed activation in bilateral inferior frontal gyri (Brodmann area [BA] 47, 45) and left middle temporal gyrus (BA 21). Words with strong semantic association elicited significantly greater activation in bilateral inferior parietal lobules (BA 40), suggesting stronger integration of highly related semantic features. By contrast, words with weak semantic association elicited greater activation in left inferior frontal gyrus (BA 45) and middle temporal gyrus (BA 21), suggesting more difficult feature search and more extensive access to semantic representations. We also examined whether age and skill explained unique variance in the patterns of activation. Increasing age was correlated with greater activation in left middle temporal gyrus (BA 21) and inferior parietal lobule (BA 40), suggesting that older children have more elaborated semantic representations and more complete semantic integration processes, respectively. Decreasing age was correlated with activation in right superior temporal gyrus (BA 22) and decreasing accuracy was correlated with activation in right middle temporal gyrus (BA 21), suggesting the engagement of ancillary systems in the right hemisphere for younger and lower‐skill children. Hum. Brain Mapping 2006.


NeuroImage | 2006

Developmental changes in the neural correlates of semantic processing.

Tai-Li Chou; James R. Booth; Douglas D. Burman; Tali Bitan; Jordan D. Bigio; Dong Lu; Nadia E. Cone

Functional magnetic resonance imaging (fMRI) was used to explore the neural correlates of semantic judgments in the auditory modality in a group of 9- to 15-year-old children. Subjects were required to indicate if word pairs were related in meaning. Consistent with previous findings in adults, children showed activation in bilateral superior temporal gyri (BA 22) for recognizing spoken words as well as activations in bilateral inferior frontal gyri (BAs 47, 45) and left middle temporal gyrus (BA 21) for semantic processing. The neural substrates of semantic association and age differences were also investigated. Words with strong semantic association elicited significantly greater activation in the left inferior parietal lobule (BA 40), whereas words with weak semantic association elicited activation in left inferior frontal gyrus (BAs 47/45). Correlations with age were observed in the left middle temporal gyrus (BA 21) and the right inferior frontal gyrus (BA 47). The pattern of results for semantic association implies that the left inferior parietal lobule effectively integrates highly related semantic features and the left inferior frontal gyrus becomes more active for words that require a greater search for semantic associations. The developmental results suggest that older children recruit the right inferior frontal gyrus as they conduct a broader semantic search and the left middle temporal gyrus to provide more efficient access to semantic representations.


NeuroImage | 2006

Weaker top-down modulation from the left inferior frontal gyrus in children.

Tali Bitan; Douglas D. Burman; Dong Lu; Nadia E. Cone; Darren R. Gitelman; M.-Marsel Mesulam; James R. Booth

Previous studies have shown that developmental changes in the structure and function of prefrontal regions can continue throughout childhood and adolescence. Our recent results suggested a role for the left inferior frontal cortex in modulating task-dependent shifts in effective connectivity when adults focus on orthographic versus phonological aspects of presented words. Specifically, the top-down influence of the inferior frontal cortex determined whether incoming word-form information from the fusiform gyrus would have a greater impact on the parietal areas involved in orthographic processing or temporal areas involved in phonological processing (Bitan, T., Booth, J.R., Choy, J., Burman, D.D., Gitelman, D.R. and Mesulam, M.-M., 2005. Shifts of Effective Connectivity within a Language Network during Rhyming and Spelling. J. Neurosci. 25, 5397-5403.). In the current study, we find that children displayed an identical pattern of task-dependent functional activations within this network. In comparison to adults, however, children had significantly weaker top-down modulatory influences emanating from the inferior frontal area. Adult language processing may thus involve greater top-down cognitive control compared to children, resulting in less interference from task-irrelevant information.


NeuroImage | 2007

Developmental changes in activation and effective connectivity in phonological processing

Tali Bitan; Jimmy Cheon; Dong Lu; Douglas D. Burman; Darren R. Gitelman; M.-Marsel Mesulam; James R. Booth

The current study examined developmental changes in activation and effective connectivity among brain regions during a phonological processing task, using fMRI. Participants, ages 9-15, were scanned while performing rhyming judgments on pairs of visually presented words. The orthographic and phonological similarity between words in the pair was independently manipulated, so that rhyming judgment could not be based on orthographic similarity. Our results show a developmental increase in activation in the dorsal part of left inferior frontal gyrus (IFG), accompanied by a decrease in the dorsal part of left superior temporal gyrus (STG). The coupling of dorsal IFG with other selected brain regions involved in the phonological decision increased with age, while the coupling of STG decreased with age. These results suggest that during development there is a shift from reliance on sensory auditory representations to reliance on phonological segmentation and covert articulation for performing rhyming judgment on visually presented words. In addition, we found a developmental increase in activation in left posterior parietal cortex that was not accompanied by a change in its connectivity with the other regions. These results suggest that maturational changes within a cortical region are not necessarily accompanied by an increase in its interactions with other regions and its contribution to the task. Our results are consistent with the idea that there is reduced reliance on primary sensory processes as task-relevant processes mature and become more efficient during development.


Human Brain Mapping | 2007

The Interaction Between Orthographic and Phonological Information in Children: An fMRI Study

Tali Bitan; Douglas D. Burman; Tai-Li Chou; Dong Lu; Nadia E. Cone; Fan Cao; Jordan D. Bigio; James R. Booth

We examined the neural representations of orthographic and phonological processing in children, while manipulating the consistency between orthographic and phonological information. Participants, aged 9–15, were scanned while performing rhyming and spelling judgments on pairs of visually presented words. The orthographic and phonological similarity between words in the pair was independently manipulated, resulting in four conditions. In the nonconflicting conditions, both orthography and phonology of the words were either (1) similar (lime‐dime) or (2) different (staff‐gain); in conflicting conditions, words had (3) similar phonology and different orthography (jazz‐has) or (4) different phonology and similar orthography (pint‐mint). The comparison between tasks resulted in greater activation for the rhyming task in bilateral inferior frontal gyri (BA 45/47), and greater activation for the spelling task in bilateral inferior/superior parietal lobules (BA 40/7), suggesting greater involvement of phonological and semantic processing in the rhyming task, and nonlinguistic spatial processing in the spelling task. Conflicting conditions were more difficult in both tasks and resulted in greater activation in the above regions. The results suggest that when children encounter inconsistency between orthographic and phonological information they show greater engagement of both orthographic and phonological processing. Hum Brain Mapp 2006.


Neuropsychologia | 2007

Children with reading disorder show modality independent brain abnormalities during semantic tasks

James R. Booth; Genna Bebko; Douglas D. Burman; Tali Bitan

Neuroimaging studies have suggested that left inferior frontal gyrus, left inferior parietal lobule and left middle temporal gyrus are critical for semantic processing in normal children. The goal of the present functional magnetic resonance imaging (fMRI) study was to determine whether these regions are systematically related to semantic processing in children (9- to 15-year-old) diagnosed with reading disorders (RD). Semantic judgments required participants to indicate whether two words were related in meaning. The strength of semantic association varied continuously from higher association pairs (e.g., king-queen) to lower association pairs (e.g. net-ship). We found that the correlation between association strength and activation was significantly weaker for RD children compared to controls in left middle temporal gyrus and left inferior parietal lobule for both the auditory and the visual modalities and in left inferior frontal gyrus for the visual modality. These results suggest that the RD children have abnormalities in semantic search/retrieval in the inferior frontal gyrus, integration of semantic information in the inferior parietal lobule and semantic lexical representations in the middle temporal gyrus. These deficits appear to be general to the semantic system and independent of modality.

Collaboration


Dive into the Tali Bitan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Lu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Cao

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Tai-Li Chou

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge