Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tali Mazor is active.

Publication


Featured researches published by Tali Mazor.


Science | 2014

Mutational Analysis Reveals the Origin and Therapy-driven Evolution of Recurrent Glioma

Brett E. Johnson; Tali Mazor; Chibo Hong; Michael Barnes; Koki Aihara; Cory Y. McLean; Shaun D. Fouse; Shogo Yamamoto; Hiroki R. Ueda; Kenji Tatsuno; Saurabh Asthana; Llewellyn E. Jalbert; Sarah J. Nelson; Andrew W. Bollen; W. Clay Gustafson; Elise Charron; William A. Weiss; Ivan Smirnov; Jun S. Song; Adam B. Olshen; Soonmee Cha; Yongjun Zhao; Richard A. Moore; Andrew J. Mungall; Steven J.M. Jones; Martin Hirst; Marco A. Marra; Nobuhito Saito; Hiroyuki Aburatani; Akitake Mukasa

Back with a Vengeance After surgery, gliomas (a type of brain tumor) recur in nearly all patients and often in a more aggressive form. Johnson et al. (p. 189, published online 12 December 2013) used exome sequencing to explore whether recurrent tumors harbor different mutations than the primary tumors and whether the mutational profile in the recurrences is influenced by postsurgical treatment of patients with temozolomide (TMZ), a chemotherapeutic drug known to damage DNA. In more than 40% of cases, at least half of the mutations in the initial glioma were undetected at recurrence. The recurrent tumors in many of the TMZ-treated patients bore the signature of TMZ-induced mutagenesis and appeared to follow an evolutionary path to high-grade glioma distinct from that in untreated patients. Primary brain tumors and their recurrences can exhibit vastly different mutational profiles. Tumor recurrence is a leading cause of cancer mortality. Therapies for recurrent disease may fail, at least in part, because the genomic alterations driving the growth of recurrences are distinct from those in the initial tumor. To explore this hypothesis, we sequenced the exomes of 23 initial low-grade gliomas and recurrent tumors resected from the same patients. In 43% of cases, at least half of the mutations in the initial tumor were undetected at recurrence, including driver mutations in TP53, ATRX, SMARCA4, and BRAF; this suggests that recurrent tumors are often seeded by cells derived from the initial tumor at a very early stage of their evolution. Notably, tumors from 6 of 10 patients treated with the chemotherapeutic drug temozolomide (TMZ) followed an alternative evolutionary path to high-grade glioma. At recurrence, these tumors were hypermutated and harbored driver mutations in the RB (retinoblastoma) and Akt-mTOR (mammalian target of rapamycin) pathways that bore the signature of TMZ-induced mutagenesis.


Cancer Cell | 2015

DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors

Tali Mazor; Aleksandr Pankov; Brett E. Johnson; Chibo Hong; Emily G. Hamilton; Robert J.A. Bell; Ivan Smirnov; Gerald F. Reis; Joanna J. Phillips; Michael Barnes; Ahmed Idbaih; Agusti Alentorn; Jenneke Kloezeman; Martine Lamfers; Andrew W. Bollen; Barry S. Taylor; Annette M. Molinaro; Adam B. Olshen; Susan M. Chang; Jun S. Song; Joseph F. Costello

The evolutionary history of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast to stable genetic events, epigenetic states are reversible and sensitive to the microenvironment, prompting the question whether epigenetic information can similarly be used to discover tumor phylogeny. We examined the spatial and temporal dynamics of DNA methylation in a cohort of low-grade gliomas and their patient-matched recurrences. Genes transcriptionally upregulated through promoter hypomethylation during malignant progression to high-grade glioblastoma were enriched in cell cycle function, evolving in parallel with genetic alterations that deregulate the G1/S cell cycle checkpoint. Moreover, phyloepigenetic relationships robustly recapitulated phylogenetic patterns inferred from somatic mutations. These findings highlight widespread co-dependency of genetic and epigenetic events throughout brain tumor evolution.


Nature Genetics | 2015

The genomic landscape of juvenile myelomonocytic leukemia

Elliot Stieglitz; Amaro Taylor-Weiner; Tiffany Y. Chang; Laura C. Gelston; Yong Dong Wang; Tali Mazor; Emilio Esquivel; Ariel Yu; Sara Seepo; Scott R. Olsen; Mara Rosenberg; Sophie Archambeault; Ghada Abusin; Kyle Beckman; Patrick Brown; Michael Briones; Benjamin Carcamo; Todd Cooper; Gary V. Dahl; Peter D. Emanuel; Mark Fluchel; Rakesh K. Goyal; Robert J. Hayashi; Johann Hitzler; Christopher Hugge; Y. Lucy Liu; Yoav Messinger; Donald H. Mahoney; Philip Monteleone; Eneida R. Nemecek

Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm (MPN) of childhood with a poor prognosis. Mutations in NF1, NRAS, KRAS, PTPN11 or CBL occur in 85% of patients, yet there are currently no risk stratification algorithms capable of predicting which patients will be refractory to conventional treatment and could therefore be candidates for experimental therapies. In addition, few molecular pathways aside from the RAS-MAPK pathway have been identified that could serve as the basis for such novel therapeutic strategies. We therefore sought to genomically characterize serial samples from patients at diagnosis through relapse and transformation to acute myeloid leukemia to expand knowledge of the mutational spectrum in JMML. We identified recurrent mutations in genes involved in signal transduction, splicing, Polycomb repressive complex 2 (PRC2) and transcription. Notably, the number of somatic alterations present at diagnosis appears to be the major determinant of outcome.


Acta Neuropathologica | 2015

Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment

Hinke F. van Thuijl; Tali Mazor; Brett E. Johnson; Shaun D. Fouse; Koki Aihara; Chibo Hong; Annika Malmström; Martin Hallbeck; Jan J. Heimans; Jenneke Kloezeman; Marie Stenmark-Askmalm; Martine Lamfers; Nobuhito Saito; Hiroyuki Aburatani; Akitake Mukasa; Mitchell S. Berger; Peter Söderkvist; Barry S. Taylor; Annette M. Molinaro; Pieter Wesseling; Jaap C. Reijneveld; Susan M. Chang; Bauke Ylstra; Joseph F. Costello

Temozolomide (TMZ) increases the overall survival of patients with glioblastoma (GBM), but its role in the clinical management of diffuse low-grade gliomas (LGG) is still being defined. DNA hypermethylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter is associated with an improved response to TMZ treatment, while inactivation of the DNA mismatch repair (MMR) pathway is associated with therapeutic resistance and TMZ-induced mutagenesis. We previously demonstrated that TMZ treatment of LGG induces driver mutations in the RB and AKT–mTOR pathways, which may drive malignant progression to secondary GBM. To better understand the mechanisms underlying TMZ-induced mutagenesis and malignant progression, we explored the evolution of MGMT methylation and genetic alterations affecting MMR genes in a cohort of 34 treatment-naïve LGGs and their recurrences. Recurrences with TMZ-associated hypermutation had increased MGMT methylation compared to their untreated initial tumors and higher overall MGMT methylation compared to TMZ-treated non-hypermutated recurrences. A TMZ-associated mutation in one or more MMR genes was observed in five out of six TMZ-treated hypermutated recurrences. In two cases, pre-existing heterozygous deletions encompassing MGMT, or an MMR gene, were followed by TMZ-associated mutations in one of the genes of interest. These results suggest that tumor cells with methylated MGMT may undergo positive selection during TMZ treatment in the context of MMR deficiency.


Cancer Cell | 2016

Intratumoral Heterogeneity of the Epigenome

Tali Mazor; Aleksandr Pankov; Jun S. Song; Joseph F. Costello

Investigation into intratumoral heterogeneity (ITH) of the epigenome is in a formative stage. The patterns of tumor evolution inferred from epigenetic ITH and genetic ITH are remarkably similar, suggesting widespread co-dependency of these disparate mechanisms. The biological and clinical relevance of epigenetic ITH are becoming more apparent. Rare tumor cells with unique and reversible epigenetic states may drive drug resistance, and the degree of epigenetic ITH at diagnosis may predict patient outcome. This perspective presents these current concepts and clinical implications of epigenetic ITH, and the experimental and computational techniques at the forefront of ITH exploration.


Journal of Clinical Investigation | 2017

Isocitrate dehydrogenase mutations suppress STAT1 and CD8 + T cell accumulation in gliomas

Gary Kohanbash; Diego Carrera; Shruti Shrivastav; Brian Ahn; Naznin Jahan; Tali Mazor; Zinal Chheda; Kira M. Downey; Payal Watchmaker; Casey Beppler; Rolf Warta; Nduka A. Amankulor; Christel Herold-Mende; Joseph F. Costello; Hideho Okada

Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 are among the first genetic alterations observed during the development of lower-grade glioma (LGG). LGG-associated IDH mutations confer gain-of-function activity by converting &agr;-ketoglutarate to the oncometabolite R-2-hydroxyglutarate (2HG). Clinical samples and gene expression data from The Cancer Genome Atlas (TCGA) demonstrate reduced expression of cytotoxic T lymphocyte–associated genes and IFN-&ggr;–inducible chemokines, including CXCL10, in IDH-mutated (IDH-MUT) tumors compared with IDH-WT tumors. Given these findings, we have investigated the impact of IDH mutations on the immunological milieu in LGG. In immortalized normal human astrocytes (NHAs) and syngeneic mouse glioma models, the introduction of mutant IDH1 or treatment with 2HG reduced levels of CXCL10, which was associated with decreased production of STAT1, a regulator of CXCL10. Expression of mutant IDH1 also suppressed the accumulation of T cells in tumor sites. Reductions in CXCL10 and T cell accumulation were reversed by IDH-C35, a specific inhibitor of mutant IDH1. Furthermore, IDH-C35 enhanced the efficacy of vaccine immunotherapy in mice bearing IDH-MUT gliomas. Our findings demonstrate a mechanism of immune evasion in IDH-MUT gliomas and suggest that specific inhibitors of mutant IDH may improve the efficacy of immunotherapy in patients with IDH-MUT gliomas.


Cancer Research | 2016

Mutant IDH1 Expression Drives TERT Promoter Reactivation as Part of the Cellular Transformation Process

Shigeo Ohba; Joydeep Mukherjee; Tor-Christian Aase Johannessen; Andrew Mancini; Tracy T. Chow; Matthew D. Wood; Lindsey Jones; Tali Mazor; Roxanne Marshall; Pavithra Viswanath; Kyle M. Walsh; Arie Perry; Robert J.A. Bell; Joanna J. Phillips; Joseph F. Costello; Sabrina M. Ronen; Russell O. Pieper

Mutations in the isocitrate dehydrogenase gene IDH1 are common in low-grade glioma, where they result in the production of 2-hydroxyglutarate (2HG), disrupted patterns of histone methylation, and gliomagenesis. IDH1 mutations also cosegregate with mutations in the ATRX gene and the TERT promoter, suggesting that IDH mutation may drive the creation or selection of telomere-stabilizing events as part of immortalization/transformation process. To determine whether and how this may occur, we investigated the phenotype of pRb-/p53-deficient human astrocytes engineered with IDH1 wild-type (WT) or R132H-mutant (IDH1mut) genes as they progressed through their lifespan. IDH1mut expression promoted 2HG production and altered histone methylation within 20 population doublings (PD) but had no effect on telomerase expression or telomere length. Accordingly, cells expressing either IDH1WT or IDH1mut entered a telomere-induced crisis at PD 70. In contrast, only IDH1mut cells emerged from crisis, grew indefinitely in culture, and formed colonies in soft agar and tumors in vivo Clonal populations of postcrisis IDH1mut cells displayed shared genetic alterations, but no mutations in ATRX or the TERT promoter were detected. Instead, these cells reactivated telomerase and stabilized their telomeres in association with increased histone lysine methylation (H3K4me3) and c-Myc/Max binding at the TERT promoter. Overall, these results show that although IDH1mut does not create or select for ATRX or TERT promoter mutations, it can indirectly reactivate TERT, and in doing so contribute to astrocytic immortalization and transformation. Cancer Res; 76(22); 6680-9. ©2016 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant IDH1

Tali Mazor; Charles Chesnelong; Aleksandr Pankov; Llewellyn E. Jalbert; Chibo Hong; Josie Hayes; Ivan Smirnov; Roxanne Marshall; Camila F. Souza; Yaoqing Shen; Pavithra Viswanath; Houtan Noushmehr; Sabrina M. Ronen; Steven J.M. Jones; Marco A. Marra; J. Gregory Cairncross; Arie Perry; Sarah J. Nelson; Susan M. Chang; Andrew W. Bollen; Annette M. Molinaro; Henrik Bengtsson; Adam B. Olshen; Samuel Weiss; Joanna J. Phillips; H. Artee Luchman; Joseph F. Costello

Significance Identifying the drivers of tumorigenesis provides insight into mechanisms of transformation and can suggest novel therapeutic targets. IDH1 mutations in gliomas are one such promising target. Drivers of tumor initiation may be distinct from those at tumor recurrence, however. Here, we demonstrate that in a subset of initially IDH1 mutant gliomas IDH1 is deleted or amplified at recurrence, yielding a higher grade tumor with a reprogrammed epigenome. We also report systematic selection for cells with IDH1 CNA in vitro and in vivo. Thus, while IDH1 mutation likely initiates gliomagenesis, neither mutant IDH1 nor the oncometabolite 2HG that it produces are required at recurrence. These findings have important implications for emerging therapeutic strategies targeting mutant IDH1. IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.


Clinical Cancer Research | 2017

Somatic and Germline TP53 Alterations in Second Malignant Neoplasms from Pediatric Cancer Survivors

Amy L. Sherborne; Vincent Lavergne; Katharine Yu; Leah Lee; Philip R. Davidson; Tali Mazor; Ivan V. Smirnoff; Andrew E. Horvai; Mignon L. Loh; Steven G. DuBois; Robert E. Goldsby; Joseph P. Neglia; Sue Hammond; Leslie L. Robison; Rosanna Wustrack; Joseph F. Costello; Alice Nakamura; Kevin Shannon; Smita Bhatia

Purpose: Second malignant neoplasms (SMNs) are severe late complications that occur in pediatric cancer survivors exposed to radiotherapy and other genotoxic treatments. To characterize the mutational landscape of treatment-induced sarcomas and to identify candidate SMN-predisposing variants, we analyzed germline and SMN samples from pediatric cancer survivors. Experimental Design: We performed whole-exome sequencing (WES) and RNA sequencing on radiation-induced sarcomas arising from two pediatric cancer survivors. To assess the frequency of germline TP53 variants in SMNs, Sanger sequencing was performed to analyze germline TP53 in 37 pediatric cancer survivors from the Childhood Cancer Survivor Study (CCSS) without any history of a familial cancer predisposition syndrome but known to have developed SMNs. Results: WES revealed TP53 mutations involving p53′s DNA-binding domain in both index cases, one of which was also present in the germline. The germline and somatic TP53-mutant variants were enriched in the transcriptomes for both sarcomas. Analysis of TP53-coding exons in germline specimens from the CCSS survivor cohort identified a G215C variant encoding an R72P amino acid substitution in 6 patients and a synonymous SNP A639G in 4 others, resulting in 10 of 37 evaluable patients (27%) harboring a germline TP53 variant. Conclusions: Currently, germline TP53 is not routinely assessed in patients with pediatric cancer. These data support the concept that identifying germline TP53 variants at the time a primary cancer is diagnosed may identify patients at high risk for SMN development, who could benefit from modified therapeutic strategies and/or intensive posttreatment monitoring. Clin Cancer Res; 23(7); 1852–61. ©2016 AACR.


Nature Communications | 2017

Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia

Elliot Stieglitz; Tali Mazor; Adam B. Olshen; Huimin Geng; Laura C. Gelston; Jon Akutagawa; Daniel B. Lipka; Christoph Plass; Christian Flotho; Farid F. Chehab; Benjamin S. Braun; Joseph F. Costello; Mignon L. Loh

Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative disorder of childhood caused by mutations in the Ras pathway. Outcomes in JMML vary markedly from spontaneous resolution to rapid relapse after hematopoietic stem cell transplantation. Here, we hypothesized that DNA methylation patterns would help predict disease outcome and therefore performed genome-wide DNA methylation profiling in a cohort of 39 patients. Unsupervised hierarchical clustering identifies three clusters of patients. Importantly, these clusters differ significantly in terms of 4-year event-free survival, with the lowest methylation cluster having the highest rates of survival. These findings were validated in an independent cohort of 40 patients. Notably, all but one of 14 patients experiencing spontaneous resolution cluster together and closer to 22 healthy controls than to other JMML cases. Thus, we show that DNA methylation patterns in JMML are predictive of outcome and can identify the patients most likely to experience spontaneous resolution.Juvenile myelomonocytic leukemia (JMML) is an aggressive disease with limited options for treatment. Here, the authors utilize DNA methylation based subgroups in JMML to predict clinical outcome.

Collaboration


Dive into the Tali Mazor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan M. Chang

University of California

View shared research outputs
Top Co-Authors

Avatar

Chibo Hong

University of California

View shared research outputs
Top Co-Authors

Avatar

Adam B. Olshen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge