Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Talita Tuon is active.

Publication


Featured researches published by Talita Tuon.


Neuroscience | 2012

Physical training exerts neuroprotective effects in the regulation of neurochemical factors in an animal model of Parkinson’s disease

Talita Tuon; Samira S. Valvassori; Jéssica Lopes-Borges; Thais F. Luciano; C.B. Trom; Luciano A. Silva; João Quevedo; Cláudio T. De Souza; Fábio Santos Lira; Ricardo A. Pinho

The effect of physical training on the neurochemical and oxidative stress markers were evaluated in the striatum of rats with Parkinsons disease (PD). Untrained+sham-operated (USO), untrained+PD (UPD), trained+sham-operated (TSO), and trained+PD (TPD) were submitted to training on the treadmill. The PD was induced and 7 days after the lesion, the animals underwent a rotational test and euthanasia by decapitation. The striatum was homogenized for Western Blot with anti-tyrosine hydroxylase (TH), anti-brain-derived neurotrophic factor (BDNF), anti-α-synuclein, anti-sarcoplasmic reticulum Ca(2+)-ATPase (SERCA II), anti-superoxide dismutase (SOD), anti-catalase (CAT), anti-glutathione peroxidase (GPX), and specific buffer for oxidative damage (TBARS and carbonyl content). The UPD and TPD groups showed a clear rotational asymmetry, apart from a significant reduction in the level of TH, BDNF, α-synuclein, SOD, CAT, and GPX as well as an increase in the TBARS and carbonyl content, as observed in the UPD group. The TH level was not significantly altered but the TPD group increased the levels of BNDF, SERCA II, SOD, and CAT and decreased the oxidative damage in lipids and protein. The effects of exercise on PD indicate the possibility that exercise, to a certain extent, modulates neurochemical status in the striatum of rats, possibly by improving the oxidative stress parameters.


Brain Research Bulletin | 2014

Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson's disease

Talita Tuon; Samira S. Valvassori; G.C. Dal Pont; C.S. Paganini; B.G. Pozzi; T.F. Luciano; P.S. Souza; João Quevedo; C.T. Souza; R.A. Pinho

Depression is a neuropsychiatric disorder that is commonly found in patients with Parkinsons disease (PD). Many studies have suggested that physical exercise can have an antidepressant effect by increasing the levels of brain-derived neurotrophic factor (BDNF), and may also prevent neurodegenerative disease. However, different forms of training may promote different changes in the brain. The aim of this study was to investigate the effects of two types of physical training on depressive-like behavior, and on the levels of proBDNF, BDNF, and its receptor, TrkB, in a mouse model of PD. C57BL/6 mice were subjected to 60 days of exercise: either running on a treadmill or performing a strength exercise. PD was induced by striatal administration of 6-OHDA 24h after the last physical exercise session. Seven days after 6-OHDA injection, depressive-like behavior and apomorphine-induced rotational behavior were evaluated. The levels of proBDNF, BDNF, and TRKB were measured in the striatum and the hippocampus of mice by immunoblotting assay. The 6-OHDA-treated animals showed a significant increase in immobility time and rotational behavior compared with the control group. In addition, significant decreases in the levels of proBDNF, BDNF, and its receptor, TrkB were observed in the 6-OHDA group. Both types of physical exercise prevented depressive-like behavior and restored the levels of proBDNF, BDNF, and TrkB in the striatum and hippocampus of mice administered 6-OHDA. Our results demonstrate that exercise training was effective for neuroprotection in the striatum and the hippocampus in an experimental model of PD.


Applied Physiology, Nutrition, and Metabolism | 2009

Effect of different models of physical exercise on oxidative stress markers in mouse liver

Luciano A. Silva; Cleber A. PinhoC.A. Pinho; Luis G.C. RochaL.G. Rocha; Talita Tuon; Paulo Cesar Lock Silveira; Ricardo A. Pinho

The aim of this study was to investigate the effect of different protocols of physical exercise on oxidative stress markers in mouse liver. Twenty-eight male CF1 mice (30-35 g) were distributed into 4 groups (n = 7) - untrained (UT), continuous running (CR), downhill running (D-HR), and intermittent running (IR) - and underwent an 8-week training program. Forty-eight hours after the last training session, the animals were killed, and their livers were removed. Blood lactate, creatine kinase, citrate synthase, thiobarbituric acid reactive species, carbonyl, superoxide dismutase (SOD), and catalase (CAT) activities were assayed. Results show a decrease in the level of lipoperoxidation and protein carbonylation in the CR and D-HR groups. SOD activity was significantly increased and CAT activity was reduced in the CR and D-HR groups. Our findings indicate that CR and D-HR may be important for decreasing oxidative damage and in the regulation of antioxidant enzymes (SOD and CAT) in the livers of trained mice.


Neuroscience Letters | 2010

Effects of moderate exercise on cigarette smoke exposure-induced hippocampal oxidative stress values and neurological behaviors in mice

Talita Tuon; Samira S. Valvassori; Jéssica Lopes-Borges; Gabriel Rodrigo Fries; Luciano A. Silva; Flávio Kapczinski; João Quevedo; Ricardo A. Pinho

The objective of the present study was to investigate the effects of exercise training on behavior and neurochemical parameters in mice exposed to cigarette smoke. To this aim, mice (C57 BL6) male (30-35 g) were exposed to cigarette smoke 60 consecutive days three times a day and they were subjected to treadmill training 8 weeks for 5 days/week. For behavior assessment, mice were tested in the open-field and forced to a swim test. The superoxide anion, thiobarbituric acid reactive substances and protein carbonyl formation were measured as markers of oxidative stress in hippocampus of mice. In addition, the brain-derived neurotrophic factor (BDNF) levels were measured in the hippocampus samples. Cigarette smoke group and cigarette smoke plus exercise group, increased immobility time in forced swimming test in rats compared to the control group, without affecting spontaneous locomotor activity. There was an increase in the levels of superoxide, TBARS and of protein carbonyl and a decreased in BDNF levels in the hippocampus of rats exposed to cigarette smoke and cigarette smoke plus exercise. Exercise alone did not change any of the parameters evaluated in this study. In conclusion, we observed that physical training improves the oxidative stress parameters, but does not alter depressive-like behavior neither prevent the decreases in BDNF levels in hippocampus induced by cigarette smoke.


Neuroscience Letters | 2007

Mitochondrial IV complex and brain neurothrophic derived factor responses of mice brain cortex after downhill training

Aderbal S. Aguiar; Talita Tuon; Cleber A. Pinho; Luciano A. Silva; Ana Cristina Andreazza; Flávio Kapczinski; João Quevedo; Emilio L. Streck; Ricardo A. Pinho

Twenty-four adult male CF1 mice were assigned to three groups: non-runners control, level running exercise (0 degrees incline) and downhill running exercise (16 degrees decline). Exercise groups were given running treadmill training for 5 days/week over 8 weeks. Blood lactate analysis was performed in the first and last exercise session. Mice were sacrificed 48 h after the last exercise session and their solei (citrate synthase activity) and brain cortices (BDNF levels and cytochrome c oxidase activity) were surgically removed and immediately stored at -80 degrees C for later analyses. Training significantly increased (P<0.05) citrate synthase activity when compared to untrained control. Blood lactate levels classified the exercise intensity as moderate to high. The downhill exercise training significantly reduced (P<0.05) brain cortex cytochrome c oxidase activity when compared to untrained control and level running exercise groups. BDNF levels significantly decreased (P<0.05) in both exercise groups.


Molecular Neurobiology | 2017

Physical Exercise Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Peripheral Immune Response and Blood-Brain Barrier Disruption.

Priscila S. Souza; Elaine C. D. Gonçalves; Giulia S. Pedroso; Hemelin Resende Farias; Stella Célio Junqueira; Rodrigo Marcon; Talita Tuon; Maíra Cola; Paulo Cesar Lock Silveira; Adair R.S. Santos; João B. Calixto; Cláudio T. De Souza; Ricardo A. Pinho; Rafael C. Dutra

AbstractMultiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) caused by demyelination, immune cell infiltration, and axonal damage. Herein, we sought to investigate the influence of physical exercise on mice experimental autoimmune encephalomyelitis (EAE), a reported MS model. Data show that both strength and endurance training protocols consistently prevented clinical signs of EAE and decreased oxidative stress, an effect which was likely due to improving genomic antioxidant defense—nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response elements (ARE) pathway—in the CNS. In addition, physical exercise inhibited the production of pro-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-17, and IL-1β in the spinal cord of mice with EAE. Of note, spleen cells obtained from strength training group incubated with MOG35–55 showed a significant upregulation of CD25 and IL-10 levels, with a decrease of IL-6, MCP-1, and tumor necrosis factor (TNF)-α production, mainly, during acute and chronic phase of EAE. Moreover, these immunomodulatory effects of exercise were associated with reduced expression of adhesion molecules, especially of platelet and endothelial cell adhesion molecule 1 (PECAM-1). Finally, physical exercise also restored the expression of tight junctions in spinal cord. Together, these results demonstrate that mild/moderate physical exercise, when performed regularly in mice, consistently attenuates the progression and pathological hallmarks of EAE, thereby representing an important non-pharmacological intervention for the improvement of immune-mediated diseases such as MS. Graphical AbstractSchematic diagram illustrating the beneficial effects of physical exercise during experimental model of MS. Physical exercise, especially strength (ST) and endurance (ET) training protocols, inhibits the development and progression of disease, measured by the mean maximal clinical score (1.5 and 1.0, respectively), with inhibition of 30 % and 50 %, respectively, based on the AUC, compared with EAEuntreated group. In addition, ST and ET decreased oxidative stress, possibly, through genomic antioxidant defense, Nrf2-Keap1 signaling pathway, in the CNS. Physical exercise inhibited the production of inflammatory cytokines, such as IFN-γ, IL-17 and IL-1β in the spinal cord after EAE induction, as well as spleen cells obtained from ST group showed a significant upregulation of regulatory T cell markers, such as CD25 and IL-10 levels, and blocked IL-6, MCP-1 and TNF-α production, mainly, during acute and chronic phase of EAE. Finally, these immunomodulatory effects of exercise were associated with inhibition of adhesion molecules and reestablishment of tight junctions expression in spinal cord tissue, thereby limiting BBB permeability and transmigration of autoreactive T cells to the CNS. NO, nitric oxide; GPx, glutathione peroxidase, GSH, glutathione; Nrf2, nuclear factor (erythroid-derived 2)-like 2; CNS, central nervous system; BBB, blood–brain barrier; IFN-g, interferon-gamma; IL-17, interleukin 17; IL-1b, interleukin-1beta.


Journal of Sports Sciences | 2013

Creatine supplementation does not decrease oxidative stress and inflammation in skeletal muscle after eccentric exercise

Luciano A. Silva; Camila B. Tromm; Guilherme Laurentina da Rosa; Karoliny Bom; Thais F. Luciano; Talita Tuon; Cláudio T. De Souza; Ricardo A. Pinho

Abstract Thirty-six male rats were used; divided into 6 groups (n = 6): saline; creatine (Cr); eccentric exercise (EE) plus saline 24 h (saline + 24 h); eccentric exercise plus Cr 24 h (Cr + 24 h); eccentric exercise plus saline 48 h (saline + 48 h); and eccentric exercise plus Cr 48 h (Cr + 48h). Cr supplementation was administered as a solution of 300 mg · kg body weight−1 · day−1 in 1 mL water, for two weeks, before the eccentric exercise. The animals were submitted to one downhill run session at 1.0 km · h−1 until exhaustion. Twenty-four and forty-eight hours after the exercise, the animals were killed, and the quadriceps were removed. Creatine kinase levels, superoxide production, thiobarbituric acid reactive substances (TBARS) level, carbonyl content, total thiol content, superoxide dismutase, catalase, glutathione peroxidase, interleukin-1b (IL-1β), nuclear factor kappa B (NF-kb), and tumour necrosis factor (TNF) were analysed. Cr supplementation neither decreases Cr kinase, superoxide production, lipoperoxidation, carbonylation, total thiol, IL-1β, NF-kb, or TNF nor alters the enzyme activity of superoxide dismutase, catalase, and glutathione peroxides in relation to the saline group, respectively (P < 0.05). There are positive correlations between Cr kinase and TBARS and TNF-α 48 hours after eccentric exercise. The present study suggests that Cr supplementation does not decrease oxidative stress and inflammation after eccentric contraction.


Oxidative Medicine and Cellular Longevity | 2015

Physical Training Regulates Mitochondrial Parameters and Neuroinflammatory Mechanisms in an Experimental Model of Parkinson's Disease

Talita Tuon; Priscila S. Souza; Marcela Farias dos Santos; Fernanda T. Pereira; Giulia S. Pedroso; Thais F. Luciano; Cláudio T. De Souza; Rafael C. Dutra; Paulo Cesar Lock Silveira; Ricardo A. Pinho

This study aimed to evaluate the effects of two different protocols for physical exercise (strength and aerobic training) on mitochondrial and inflammatory parameters in the 6-OHDA experimental model of Parkinsons disease. Six experimental groups were used (n = 12 per group): untrained + vehicle (Sham), strength training + vehicle (STR), treadmill training + vehicle (TTR), untrained + 6-OHDA (U + 6-OHDA), strength training + 6-OHDA (STR + 6-OHDA), and treadmill training + 6-OHDA (TTR + 6-OHDA). The mice were subjected to strength or treadmill training for 8 weeks. PD was induced via striatal injection of 6-OHDA 24 h after the last exercise session. Mice were euthanized by cervical dislocation and the striatum and hippocampus were homogenized to determine levels of tyrosine hydroxylase (TH), nuclear factor kappa B (NF-κB) p65, and sirtuin 1 (Sirt1) by western blot; tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-17, interferon-γ (IFN-γ), and transforming growth factor β1 (TGF-β1) levels by ELISA; NO content; and complex I (CI) activity. STR + 6-OHDA mice had higher TH levels and CI activity and lower NF-κB p65 and IFN-γ levels in the striatum compared to U + 6-OHDA mice, while TTR + 6-OHDA mice had higher Sirt1 levels and CI activity in both the striatum and the hippocampus, compared to U + 6-OHDA mice. Strength training increased CI activity and TH and Sirt1 levels and reduced NO, NF-κB p65, TNF-α, IFN-γ, IL-1β, and TGF-β1 levels in 6-OHDA mice, while treadmill exercise increased CI activity and NO, TH, and Sirt1 levels and reduced NF-κB p65, TNF-α, IFN-γ, and IL-1β levels. Our results demonstrated that both treadmill training and strength training promote neuroprotection, possibly by stimulating Sirt1 activity, which may in turn regulate both mitochondrial function and neuroinflammation via deacetylation of NF-κB p65. Changes in nitric oxide levels may also be a mechanism by which 6-OHDA-induced inflammation is controlled.


Life Sciences | 2016

Neurochemical correlation between major depressive disorder and neurodegenerative diseases.

Gislaine Z. Réus; Stephanie E. Titus; Helena M. Abelaira; Sharon M. Freitas; Talita Tuon; João Quevedo; Josiane Budni

Major depressive disorder (MDD) is one of the most prevalent and life-threatening forms of mental illnesses affecting elderly people and has been associated with poor cognitive function. Recent evidence suggests a strong relationship between MDD and neurodegenerative diseases, including Alzheimers disease (AD), Parkinsons disease (PD), Huntingtons disease (HD), Amyotrophic Lateral Sclerosis (ALS), as well as natural processes of aging. Changes in the neuroplasticity, morphology, and neurotransmission in the brain are seem to be associated to both, MDD and neurodegenerative diseases. In addition, there is evidence that psychological stress and MDD are associated with molecular and cellular signs of accelerated aging. This review will highlight the relationship between MDD, the aging process, and neurodegenerative diseases, emphasizing the neurochemical processes involved.


Hormone and Metabolic Research | 2012

Effect of physical training on the adipose tissue of diet-induced obesity mice: interaction between reactive oxygen species and lipolysis.

J. M. de Farias; Karoliny Bom; Camila B. Tromm; Thais F. Luciano; Scherolin O. Marques; Talita Tuon; Luciano A. Silva; Fábio Santos Lira; C. T. De Souza; Ricardo A. Pinho

It is well known that high-fat diets (HFDs) induce obesity and result in an increase in oxidative stress in adipose tissue, which leads to an impairment of fat mobilization by a downregulation of the lipases, such as hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). On the other hand, exercise training leads to a reduction in adipose tissue and an improvement of antioxidant status and the lipolytic pathway. Our aim was to examine the influence of exercise and moderate intensity training on oxidative stress parameters and the relationship between the proteins involved in the lipolysis of animals subjected to a high-fat fed diet. Twenty-four mice were used and divided into 4 groups (n=6): standard diet (SD); standard diet plus exercise (SD+Ex); high-fat diet (HFD); and high-fat diet plus exercise (HFD+Ex). The animals received HFD for 90 days and submitted to a daily training protocol in swinging. The animals were euthanized 48 h after the last session of exercise. White adipose tissue epididymal fat was excised for the measurement of oxidative stress parameters and protein levels of lipolytic enzymes by Western blotting. The results show an increase in body weight after 90 days of HFD, and exercise training prevented great gain. In adipose tissue, lipid peroxidation and protein carbonylation increased after HFD and decreased significantly after exercise training. The protein level of CGI-58 was reduced, and FAS was increased in the HFD than in SD, whereas ATGL exhibited an increase (p<0.05) in HFD than in SD. The exercise plays a significant role in reducing oxidative damage, along with the regulation of proteins that are involved in the lipolysis of animals exposed to HFD.

Collaboration


Dive into the Talita Tuon's collaboration.

Top Co-Authors

Avatar

Ricardo A. Pinho

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Luciano A. Silva

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Paulo Cesar Lock Silveira

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Cláudio T. De Souza

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

João Quevedo

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Karoliny Bom

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Camila B. Tromm

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Bruna G. Pozzi

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Cleber A. Pinho

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Guilherme Laurentina da Rosa

Universidade do Extremo Sul Catarinense

View shared research outputs
Researchain Logo
Decentralizing Knowledge