Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamako Jones is active.

Publication


Featured researches published by Tamako Jones.


Radiation Research | 2013

Spaceflight Environment Induces Mitochondrial Oxidative Damage in Ocular Tissue

Xiao Wen Mao; Michael J. Pecaut; Louis S. Stodieck; Virginia L. Ferguson; Ted A. Bateman; Mary L. Bouxsein; Tamako Jones; Maria Moldovan; Christopher E. Cunningham; Jenny Chieu; Daila S. Gridley

A recent report shows that more than 30% of the astronauts returning from Space Shuttle missions or the International Space Station (ISS) were diagnosed with eye problems that can cause reduced visual acuity. We investigate here whether spaceflight environment-associated retinal damage might be related to oxidative stress-induced mitochondrial apoptosis. Female C57BL/6 mice were flown in the space shuttle Atlantis (STS-135), and within 3–5 h of landing, the spaceflight and ground-control mice, similarly housed in animal enclosure modules (AEMs) were euthanized and their eyes were removed for analysis. Changes in expression of genes involved in oxidative stress, mitochondrial and endothelial cell biology were examined. Apoptosis in the retina was analyzed by caspase-3 immunocytochemical analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Levels of 4-hydroxynonenal (4-HNE) protein, an oxidative specific marker for lipid peroxidation were also measured. Evaluation of spaceflight mice and AEM ground-control mice showed that expression of several genes playing central roles in regulating the mitochondria-associated apoptotic pathway were significantly altered in mouse ocular tissue after spaceflight compared to AEM ground-control mice. In addition, the mRNA levels of several genes, which are responsible for regulating the production of reactive oxygen species were also significantly up-regulated in spaceflight samples compared to AEM ground-control mice. Further more, the level of HNE protein was significantly elevated in the retina after spaceflight compared to controls. Our results also revealed that spaceflight conditions induced significant apoptosis in the retina especially inner nuclear layer (INL) and ganglion cell layer (GCL) compared to AEM ground controls. The data provided the first evidence that spaceflight conditions induce oxidative damage that results in mitochondrial apoptosis in the retina. This data suggest that astronauts may be at increased risk for late retinal degeneration.


Radiation Research | 2010

High-LET Radiation-Induced Response of Microvessels in the Hippocampus

Xiao Wen Mao; Cecile J. Favre; John R. Fike; Lucie Kubínová; Ella Anderson; Mary Campbell-Beachler; Tamako Jones; Anna L. Smith; Steven Rightnar; Gregory A. Nelson

Abstract The hippocampus is critical for learning and memory, and injury to this structure is associated with cognitive deficits. The response of the hippocampal microvessels after a relatively low dose of high-LET radiation remains unclear. In this study, endothelial population changes in hippocampal microvessels exposed to 56Fe ions at doses of 0, 0.5, 2 and 4 Gy were quantified using unbiased stereological techniques. Twelve months after exposure, mice that received 0.5 Gy or 2 Gy of iron ions showed a 34% or 29% loss of endothelial cells, respectively, in the hippocampal cornu ammonis region 1 (CA1) compared to age-matched controls or mice that received 4 Gy (P < 0.05). We suggest that this “U-shaped” dose response indicates a repopulation from a sensitive subset of endothelial cells that occurred after 4 Gy that was stimulated by an initial rapid loss of endothelial cells. In contrast to the CA1, in the dentate gyrus (DG), there was no significant difference in microvessel cell and length density between irradiated groups and age-matched controls. Vascular topology differences between CA1 and DG may account for the variation in dose response. The correlation between radiation-induced alterations in the hippocampal microvessels and their functional consequences must be investigated in further studies.


Radiation Research | 2006

Acute Effects of Iron-Particle Radiation on Immunity. Part I: Population Distributions

Michael J. Pecaut; Radha Dutta-Roy; Anna L. Smith; Tamako Jones; Gregory A. Nelson; Daila S. Gridley

Abstract Pecaut, M. J., Dutta-Roy, R., Smith, A. L., Jones, T. A., Nelson, G. A. and Gridley, D. S. Acute Effects of Iron-Particle Radiation on Immunity. Part I: Population Distributions. Radiat. Res. 165, 68–77 (2006). Health risks due to exposure to high-linear energy transfer (LET) charged particles remain unclear. The major goal of this study was to confirm and further characterize the acute effects of high-LET radiation (56Fe26) on erythrocyte, thrombocyte and leukocyte populations in three body compartments after total-body exposure. Adult female C57BL/6 mice were irradiated with total doses of 0, 0.5, 2 and 3 Gy and killed humanely 4 days later. Body and organ masses were determined and blood, spleen and bone marrow leukocytes were evaluated using a hematology analyzer and flow cytometry. Spleen and thymus (but not body, liver and lung) masses were significantly decreased in a dose-dependent manner. In general, red blood cell (RBC) counts and most other RBC parameters were depressed with increasing dose (P < 0.05); the major exception was an increase in cell size at 0.5 Gy. Platelet numbers and volume, total white blood cell counts, and all three major types of leukocytes also decreased (P < 0.05). Lymphocyte populations in blood and spleen exhibited variable degrees of susceptibility to 56Fe-particle radiation (B > T > NK and T cytotoxic > T helper cells). In the bone marrow, leukocytes with granulocytic, lymphocytic (“dim” and “bright”), and monocytic characteristics exhibited proportional variations at the higher radiation doses in the expression of CD34 and/or Ly-6A/E. The data are discussed in relation to our previous investigations with iron ions, other forms of radiation, and space flight in this same animal model.


PLOS ONE | 2016

Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice

Jianhui Chang; Yi Luo; Yingying Wang; Rupak Pathak; Vijayalakshmi Sridharan; Tamako Jones; Xiao Wen Mao; Gregory A. Nelson; Marjan Boerma; Martin Hauer-Jensen; Daohong Zhou; Lijian Shao

One of the major health risks to astronauts is radiation on long-duration space missions. Space radiation from sun and galactic cosmic rays consists primarily of 85% protons, 14% helium nuclei and 1% high-energy high-charge (HZE) particles, such as oxygen (16O), carbon, silicon, and iron ions. HZE particles exhibit dense linear tracks of ionization associated with clustered DNA damage and often high relative biological effectiveness (RBE). Therefore, new knowledge of risks from HZE particle exposures must be obtained. In the present study, we investigated the acute effects of low doses of 16O irradiation on the hematopoietic system. Specifically, we exposed C57BL/6J mice to 0.1, 0.25 and 1.0 Gy whole body 16O (600 MeV/n) irradiation and examined the effects on peripheral blood (PB) cells, and bone marrow (BM) hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) at two weeks after the exposure. The results showed that the numbers of white blood cells, lymphocytes, monocytes, neutrophils and platelets were significantly decreased in PB after exposure to 1.0 Gy, but not to 0.1 or 0.25 Gy. However, both the frequency and number of HPCs and HSCs were reduced in a radiation dose-dependent manner in comparison to un-irradiated controls. Furthermore, HPCs and HSCs from irradiated mice exhibited a significant reduction in clonogenic function determined by the colony-forming and cobblestone area-forming cell assays. These acute adverse effects of 16O irradiation on HSCs coincided with an increased production of reactive oxygen species (ROS), enhanced cell cycle entry of quiescent HSCs, and increased DNA damage. However, none of the 16O exposures induced apoptosis in HSCs. These data suggest that exposure to low doses of 16O irradiation induces acute BM injury in a dose-dependent manner primarily via increasing ROS production, cell cycling, and DNA damage in HSCs. This finding may aid in developing novel strategies in the protection of the hematopoietic system from space radiation.


Radiation Research | 2018

Acute Effect of Low-Dose Space Radiation on Mouse Retina and Retinal Endothelial Cells

Xiao Wen Mao; Marjan Boerma; D. Rodriguez; M. Campbell-Beachler; Tamako Jones; S. Stanbouly; Vijayalakshmi Sridharan; A Wroe; Gregory A. Nelson

There is concern that degradation of vision as a result of space flight may compromise both mission goals and long-term quality of life after space travel. The visual disturbances may be due to a combination of intracerebral pressure changes and exposure to ionizing radiation. The retina and the retinal vasculature play important roles in vision, yet have not been studied extensively in relationship to space travel and space radiation. The goal of the current study was to characterize oxidative damage and apoptosis in retinal endothelial cells after whole-body gamma-ray, proton and oxygen (16O) ion radiation exposure at 0.1 to 1 Gy. Six-month-old male C57Bl/6J mice were whole-body irradiated with 600 MeV/n 16O ions (0, 0.1, 0.25, 1 Gy), solar particle event (SPE)-like protons (0, 0.1, 0.25, 0.5 Gy) or 60Co gamma rays (0, 0.1, 0.25, 0.5 Gy). Eyes were isolated for examining endothelial nitric oxide synthase (eNOS) expression and characterization of apoptosis in retina and retinal endothelial cells at two weeks postirradiation. The expression of eNOS was significantly increased in the retina after proton and 16O ion exposure. 16O ions induced over twofold increase in eNOS expression compared to proton exposure at two weeks postirradiation (P < 0.05). TUNEL assays showed dose-dependent increases in apoptosis in the retina after irradiation. Low doses of 16O ions elicited apoptosis in the mouse retinal endothelial cells with the most robust changes observed after 0.1 Gy irradiation (P < 0.05) compared to controls. Data also showed that 16O ions induced a higher frequency of apoptosis in retinal endothelial cells compared to protons (P < 0.05). In summary, our study revealed that exposure to low-dose ionizing radiation induced oxidative damage and apoptosis in the retina. Significant changes in retinal endothelial cells occur at doses as low as 0.1 Gy. There were significant differences in the responses of endothelial cells among the radiation types examined here.


PLOS ONE | 2017

Low doses of oxygen ion irradiation cause long-term damage to bone marrow hematopoietic progenitor and stem cells in mice

Yingying Wang; Jianhui Chang; Xin Li; Rupak Pathak; Vijayalakshmi Sridharan; Tamako Jones; Xiao Wen Mao; Gregory A. Nelson; Marjan Boerma; Martin Hauer-Jensen; Daohong Zhou; Lijian Shao

During deep space missions, astronauts will be exposed to low doses of charged particle irradiation. The long-term health effects of these exposures are largely unknown. We previously showed that low doses of oxygen ion (16O) irradiation induced acute damage to the hematopoietic system, including hematopoietic progenitor and stem cells in a mouse model. However, the chronic effects of low dose 16O irradiation remain undefined. In the current study, we investigated the long-term effects of low dose 16O irradiation on the mouse hematopoietic system. Male C57BL/6J mice were exposed to 0.05 Gy, 0.1 Gy, 0.25 Gy and 1.0 Gy whole body 16O (600 MeV/n) irradiation. The effects of 16O irradiation on bone marrow (BM) hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) were examined three months after the exposure. The results showed that the frequencies and numbers of BM HPCs and HSCs were significantly reduced in 0.1 Gy, 0.25 Gy and 1.0 Gy irradiated mice compared to 0.05 Gy irradiated and non-irradiated mice. Exposure of mice to low dose 16O irradiation also significantly reduced the clongenic function of BM HPCs determined by the colony-forming unit assay. The functional defect of irradiated HSCs was detected by cobblestone area-forming cell assay after exposure of mice to 0.1 Gy, 0.25 Gy and 1.0 Gy of 16O irradiation, while it was not seen at three months after 0.5 Gy and 1.0 Gy of γ-ray irradiation. These adverse effects of 16O irradiation on HSCs coincided with an increased intracellular production of reactive oxygen species (ROS). However, there were comparable levels of cellular apoptosis and DNA damage between irradiated and non-irradiated HPCs and HSCs. These data suggest that exposure to low doses of 16O irradiation induces long-term hematopoietic injury, primarily via increased ROS production in HSCs.


International Journal of Radiation Biology | 2017

Whole body proton irradiation causes acute damage to bone marrow hematopoietic progenitor and stem cells in mice

Jianhui Chang; Yingying Wang; Rupak Pathak; Vijayalakshmi Sridharan; Tamako Jones; Xiao Wen Mao; Gregory A. Nelson; Marjan Boerma; Martin Hauer-Jensen; Daohong Zhou; Lijian Shao

Abstract Purpose: Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. Materials and methods: We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. Results: 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. Conclusion: Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.


PLOS ONE | 2013

Correction: Changes in Mouse Thymus and Spleen after Return from the STS-135 Mission in Space

Daila S. Gridley; Xiao Wen Mao; Louis S. Stodieck; Virginia L. Ferguson; Ted A. Bateman; Maria Moldovan; Christopher E. Cunningham; Tamako Jones; Jerry M. Slater; Michael J. Pecaut

[This corrects the article on p. e75097 in vol. 8.].


Radiation Research | 2018

Peripheral T Cells as a Biomarker for Oxygen-Ion-Radiation-Induced Social Impairments

Karen Krukowski; Tamako Jones; Mary Campbell-Beachler; Gregory A. Nelson; Susanna Rosi

Exposure to galactic cosmic rays (GCR) poses an obstacle to successful deep space missions, including missions to the Moon or Mars. Previously, we and others have identified chronic cognitive impairments associated with GCR in rodent model systems. The persistent cognitive loss previously reported is indicative of global changes in different regions of the brain, including the prefrontal cortex and the hippocampus. It has been shown that both of these brain regions are involved in social functions. Here we demonstrate that four months after a single exposure to oxygen ionizing radiation, which is a component of GCR, adult male mice have social memory deficits. Importantly, we identified circulating levels of CD8 T cells as predictors of social behavioral changes. Thus, CD8 T cells could be used as a potential peripheral biomarker. To the best of our knowledge we demonstrate for the first time that GCR-induced impairments in social behavior are directly linked to peripheral immune changes. These results further advance our understanding of the challenges encountered during space exploration.


Journal of Radiation Research | 2014

Bystander signaling in C. elegans: proton microbeam studies

Gregory A. Nelson; Tamako Jones; Leticia Ortloff; John Ford; Delia Nuñez; L.A. Braby

Biological model: In this project, we investigated the control of radiation-induced genotoxic damage expression in somatic cells of the nematode Caenorhabditis elegans. We measured genotoxic damage in the C. elegans intestine by irradiating young larvae with 20 intestinal cells. Fourteen of these cells undergo exactly one nuclear division without cytoplasmic division leading to 14 binucleate cells. This nuclear division is synchronized and occurs at the first larval molt. Irradiation induces chromosome aberrations including dicentrics which we can quantify as stable anaphase bridges in the binucleate cells of young adult intestines. The endpoint is dose- and LET-dependent and we have demonstrated that individual intestinal cells have unique radiosensitivities. Results: The project has two components, a genetic screen for genes that control cell sensitivity and a microbeam component to directly probe individual cells. The genetic screen has identified several genes in NHEJ repair and telomere metabolism that modulate overall bridge frequency. Knockout mutants of cku-70, cku-80 and lig-4 greatly sensitize animals for anaphase bridge induction. A statistical method was used to determine whether induction of bridges was strictly random and cell autonomous and we determined that expression of bridges in pairs of cells was, in fact, non-random which suggested that signaling between cells affected the pattern of bridge expression. This allowed us to conduct an RNAi and mutation screen for genes that control the signaling (block non-random distributions) and several candidates have been identified. To directly test the notion that signaling of genotoxic damage occurs, we conducted experiments with alpha particles collimated through slits in metal foils and showed that genotoxic damage could be expressed many cell diameters away from a partial body exposure site. Thus, an in vivo bystander effect was demonstrated. Dose targeting was then improved to small regional exposures and eventually to individual cell targeting using 2 MeV protons from the microbeam facility at Texas A&M University. We now employ a green fluorescent protein (GFP)-expressing transgenic worm (rrIs1[elt-2::GFP]) to target GFP-positive gut cells via the gut-specific transcription factor elt-2. This allows alignment of the cell of interest over the microbeam aperture under appropriate fluorescence illumination. Microbeam irradiation experiments for many pairwise combinations of cell signal transmission and reception (observed as expression of anaphase bridges) have been conducted and several interesting patterns emerge. (i) The signaling pattern is cell-specific and does not simply reflect cell–cell distance or require direct contact between cell pairs. (ii) The signal range can be as far as from cell pair 2 to cell pair 8 (>100 µm). (iii) There appears to be a functional compartment boundary at the pharynx/intestine valve as even high-dose exposures to the posterior pharyngeal bulb fail to induce bridges in nearby intestinal cells. (iv) The frequency of signal transmission and reception corresponds broadly to the overall frequency of bridges observed during whole-body irradiations which suggests that direct irradiation and ‘out-of-field’ effects may be additive. These patterns have been analyzed in terms of a cellular logic circuit map for signal transmission and reception. A dose–response for a subset of microbeam-targeted cells was measured over the range of 5–20 Gy. Controlled cell pair targeting was used to test the potential additivity of signals and we found that effects were supra-additive. Finally, preliminary measurements were conducted on GFP-expressing transgenic strains that bore cku-70(tm1524) III and smk-1(mn156) V mutations which confer enhanced radiosensitivity. Cku-70 is a Ku-70 ortholog while smk-1 is orthologous to the mammalian and Dictyostelium discoideum SMEK (suppressor of MEK null) protein. In the cku-70(0/0) strain, the severity of the bridges in bystander cells was enhanced, suggesting that signal recipient cells employ NHEJ repair pathways in the expression of anaphase bridges. Clinical trial registration number: Not applicable.

Collaboration


Dive into the Tamako Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis S. Stodieck

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Marjan Boerma

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanna Rosi

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge