Tamar Dugladze
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tamar Dugladze.
The Journal of Physiology | 2005
Tengis Gloveli; Tamar Dugladze; Sikha Saha; Hannah Monyer; Uwe Heinemann; Roger D. Traub; Miles A. Whittington; Eberhard H. Buhl
Using whole‐cell patch‐clamp recordings in conjunction with post hoc anatomy we investigated the physiological properties of hippocampal stratum oriens and stratum pyramidale inhibitory interneurones, before and following the induction of pharmacologically evoked gamma frequency network oscillations. Prior to kainate‐induced transient epochs of gamma activity, two distinct classes of oriens interneurones, oriens lacunosum‐moleculare (O‐LM) and trilaminar cells, showed prominent differences in their membrane and firing properties, as well as in the amplitude and kinetics of their excitatory postsynaptic events. In the active network both types of neurone received a phasic barrage of gamma frequency excitatory inputs but, due to their differential functional integration, showed clear differences in their output patterns. While O‐LM cells fired intermittently at theta frequency, trilaminar interneurones discharged on every gamma cycle and showed a propensity to fire spike doublets. Two other classes of fast spiking interneurones, perisomatic targeting basket and bistratified cells, in the active network discharged predominantly single action potentials on every gamma cycle. Thus, within a locally excited network, O‐LM cells are likely to provide a theta‐frequency patterned output to distal dendritic segments, whereas basket and bistratified cells are involved in the generation of locally synchronous gamma band oscillations. The anatomy and output profile of trilaminar cells suggest they are involved in the projection of locally generated gamma rhythms to distal sites. Therefore a division of labour appears to exist whereby different frequencies and spatiotemporal properties of hippocampal rhythms are mediated by different interneurone subtypes.
Frontiers in Molecular Neuroscience | 2008
Colin Kehrer; Nino Maziashvili; Tamar Dugladze; Tengis Gloveli
Schizophrenia is a common psychiatric disorder of high incidence, affecting approximately 1% of the world population. The essential neurotransmitter pathology of schizophrenia remains poorly defined, despite huge advances over the past half-century in identifying neurochemical and pathological abnormalities in the disease. The dopamine/serotonin hypothesis has originally provided much of the momentum for neurochemical research in schizophrenia. In recent years, the attention has, however, shifted to the glutamate system, the major excitatory neurotransmitter in the CNS and towards a concept of functional imbalance between excitatory and inhibitory transmission at the network level in various brain regions in schizophrenia. The evidence indicating a central role for the NMDA-receptor subtype in the aetiology of schizophrenia has led to the NMDA-hypofunction model of this disease and the use of phencyclidines as a means to induce the NMDA-hypofunction state in animal models. The purpose of this review is to discuss recent findings highlighting the importance of the NMDA-hypofunction model of schizophrenia, both from a clinical perspective, as well as in opening a line of research, which enables electrophysiological studies at the cellular and network level in vitro. In particular, changes in excitation–inhibition (E/I) balance in the NMDA-hypofunction model of the disease and the resulting changes in network behaviours, particularly in gamma frequency oscillatory activity, will be discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Adriano B. L. Tort; Horacio G. Rotstein; Tamar Dugladze; Tengis Gloveli; Nancy Kopell
Gamma frequency (30–80 Hz) network oscillations have been observed in the hippocampus during several behavioral paradigms in which they are often modulated by a theta frequency (4–12 Hz) oscillation. Interneurons of the hippocampus have been shown to be crucially involved in rhythms generation, and several subtypes with distinct anatomy and physiology have been described. In particular, the oriens lacunosum-moleculare (O-LM) interneurons were shown to synapse on distal apical dendrites of pyramidal cells and to spike preferentially at theta frequency, even in the presence of gamma-field oscillations. O-LM cells have also recently been shown to present higher axonal ramification in the longitudinal axis of the hippocampus. By using a hippocampal network model composed of pyramidal cells and two types of interneurons (O-LM and basket cells), we show here that the O-LM interneurons lead to gamma coherence between anatomically distinct cell modules. We thus propose that this could be a mechanism for coupling longitudinally distant cells excited by entorhinal cortex inputs into gamma-coherent assemblies.
Neuroscience | 1997
Tengis Gloveli; Dietmar Schmitz; Ruth M. Empson; Tamar Dugladze; Uwe Heinemann
Entorhinal cortex layer III cells send their axons into hippocampal area CA1, forming the less well studied branch of the perforant path. Using electrophysiological and morphological techniques within a slice preparation, we can classify medial entorhinal cortex layer III cells into four different types. Type 1 and 2 cells were projection cells. Type 1 cells fired regularly and possessed high input resistances and long membrane time constants. Electrical stimulation of the lateral entorhinal cortex revealed a strong excitation by both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potentials. Type 2 cells accommodated strongly, had lower input resistances, faster time constants and featured prominent synaptic inhibition. Type 1 and 2 cells responded to repetitive synaptic stimulation with a prolonged hyperpolarization. We identified the two other, presumed local circuit, cell types whose axons remained within the entorhinal cortex. Type 3 cells were regular firing, had high input resistances and slow membrane time constants, while type 4 cells fired at higher frequencies and possessed a faster time constant and lower input resistance than type 3 neurons. Type 3 cells presented long-lasting excitatory synaptic potentials. Type 4 neurons were the only ones with different responses to stimulation from different sites. Upon lateral entorhinal cortex stimulation they responded with an excitatory postsynaptic potential, while a monosynaptic inhibitory postsynaptic potential was evoked from deep layer stimulation. In contrast to type 1 and 2 neurons, none of the local circuit cells could be antidromically activated from deep layers, and prolonged hyperpolarizations following synaptic repetitive stimulation were also absent in these cells. Together, the complementing morphology and the electrophysiological characteristics of all the cells can provide the controlled flexibility required during the transfer of cortical information to the hippocampus.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Tamar Dugladze; Imre Vida; Adriano B. L. Tort; Anna Gross; Jacub Otahal; Uwe Heinemann; Nancy Kopell; Tengis Gloveli
Mesial temporal lobe epilepsy (mTLE) is one of the most common forms of epilepsy, characterized by hippocampal sclerosis and memory deficits. Injection of kainic acid (KA) into the dorsal hippocampus of mice reproduces major electrophysiological and histopathological characteristics of mTLE. In extracellular recordings from the morphologically intact ventral hippocampus of KA-injected epileptic mice, we found that theta-frequency oscillations were abolished, whereas gamma oscillations persisted both in vivo and in vitro. Whole-cell recordings further showed that oriens-lacunosum-moleculare (O-LM) interneurons, key players in the generation of theta rhythm, displayed marked changes in their intrinsic and synaptic properties. Hyperpolarization-activated mixed cation currents (Ih) were significantly reduced, resulting in an increase in the input resistance and a hyperpolarizing shift in the resting membrane potential. Additionally, the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) was increased, indicating a stronger excitatory input to these neurons. As a consequence, O-LM interneurons increased their firing rate from theta to gamma frequencies during induced network activity in acute slices from KA-injected mice. Thus, our physiological data together with network simulations suggest that changes in excitatory input and synaptic integration in O-LM interneurons lead to impaired rhythmogenesis in the hippocampus that in turn may underlie memory deficit.
Science | 2012
Tamar Dugladze; Dietmar Schmitz; Miles A. Whittington; Imre Vida; Tengis Gloveli
Controlling the Axon The cellular mechanisms and circuits involved in gamma oscillations in the brain are not fully understood. Dugladze et al. (p. 1458) simultaneously performed patch-clamp recordings in the soma and axon of hippocampal pyramidal neurons during gamma oscillations in brain slices. Under these conditions, pyramidal cells were divided into two electrogenic compartments: the soma fired at low frequency, whereas, in the axon, ectopic action potentials were generated at higher frequencies. This functional separation was maintained by highly active axoaxonic interneurons. Powerful inhibition of the axon initial segment by these axoaxonic cells prevented the backpropagation of ectopic action potentials to the somatodendritic compartment. However, when the overall excitatory drive to pyramidal cells was high, normal orthodromic action potentials were generated. Inhibition by axo-axonic interneurons functionally separates the input and output of hippocampal pyramidal cells. In central neurons, information flows from the dendritic surface toward the axon terminals. We found that during in vitro gamma oscillations, ectopic action potentials are generated at high frequency in the distal axon of pyramidal cells (PCs) but do not invade the soma. At the same time, axo-axonic cells (AACs) discharged at a high rate and tonically inhibited the axon initial segment, which can be instrumental in preventing ectopic action potential back-propagation. We found that activation of a single AAC substantially lowered soma invasion by antidromic action potential in postsynaptic PCs. In contrast, activation of soma-inhibiting basket cells had no significant impact. These results demonstrate that AACs can separate axonal from somatic activity and maintain the functional polarization of cortical PCs during network oscillations.
European Journal of Neuroscience | 2001
Tengis Gloveli; Tamar Dugladze; Dietmar Schmitz; Uwe Heinemann
Medial entorhinal cortex (EC) deep layer neurons projecting to the dentate gyrus (DG) were studied. Neurons, retrogradely‐labelled with rhodamine‐dextran‐amine were characterized electrophysiologically with the patch clamp technique and finally labelled with biocytin. Pyramidal and nonpyramidal neurons form projections from the deep layers of the EC to the molecular layer of the DG. In addition, both classes of projection neurons send ascending axon collaterals to the superficial layers of the EC. Both classes of neurons were characterized physiologically by regular action potential firing upon depolarizing current injection. While a substantial number of pyramidal projection cells showed intrinsic membrane potential oscillations, none of the studied nonpyramidal cells exhibited oscillations. Despite the morphological similarity of bipolar and multipolar cells to those of GABAergic interneurons in the EC, their electrophysiological characteristics were similar to those of principal neurons and immunocytochemistry for GABA was negative. We conclude, that neurons of the deep layers of the medial EC projecting to the DG may function as both local circuit and projecting neurons thereby contributing to synchronization between deep layers of the EC, superficial layers of the EC and the DG.
The EMBO Journal | 2011
Dennis Koch; Isabella Spiwoks-Becker; Victor Sabanov; Anne Sinning; Tamar Dugladze; Anne Stellmacher; Rashmi Ahuja; Julia Grimm; Susann Schüler; Anke Müller; Frank Angenstein; Tariq Ahmed; Alexander Diesler; Markus Moser; Susanne tom Dieck; Rainer Spessert; Tobias M. Boeckers; Reinhard Fässler; Christian A. Hübner; Detlef Balschun; Tengis Gloveli; Michael M. Kessels; Britta Qualmann
Synaptic transmission relies on effective and accurate compensatory endocytosis. F‐BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F‐BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high‐capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity‐dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.
Neuroscience | 1998
Dietmar Schmitz; Tengis Gloveli; Joachim Behr; Tamar Dugladze; Uwe Heinemann
Neuronal oscillations are important for information processing. The entorhinal cortex is one of the structures which is involved in generation of theta rhythm. The major role of the entorhinal cortex is to feed diverse sources of information both to and from the hippocampus. Far from simply being a funnel for this information it becomes clear that the entorhinal cortex has its own active properties that contribute to signal processing. Interestingly, stellate cells in layer II of the entorhinal cortex can intrinsically generate subthreshold, Na+-dependent membrane potential oscillations. Here, using intracellular and patch-clamp recordings, we report a similar phenomenon from neurons of the deep layers of the entorhinal cortex. In our in vitro slice preparation about two-thirds of recorded neurons were able to generate voltage-sensitive subthreshold membrane potential oscillations. At a membrane potential of about 50 mV the mean frequency of the voltage-oscillations was 8.1 Hz, whereby at slightly more positive potentials (-44 mV) the frequency of the membrane potential oscillations was 20 Hz and the oscillations became interrupted by clusters of non-adapting trains of spikes. Pharmacological experiments revealed that the oscillations were not affected by Cs+, but could be blocked by the fast Na+-channel blocker tetrodotoxin. We therefore conclude that voltage- and Na+-dependent subthreshold membrane potential oscillations are not only present in stellate cells of entorhinal cortex-layer II, but are also typical for neurons of the deep layers of the entorhinal cortex.
Journal of Clinical Investigation | 2014
Aline Winkelmann; Nicola Maggio; Joanna Eller; Gürsel Çalışkan; Marcus Semtner; Ute Häussler; René Jüttner; Tamar Dugladze; Birthe Smolinsky; Sarah Kowalczyk; Ewa Chronowska; Günter Schwarz; Fritz G. Rathjen; Gideon Rechavi; Carola A. Haas; Akos Kulik; Tengis Gloveli; Uwe Heinemann; Jochen C. Meier
The mechanisms that regulate the strength of synaptic transmission and intrinsic neuronal excitability are well characterized; however, the mechanisms that promote disease-causing neural network dysfunction are poorly defined. We generated mice with targeted neuron type-specific expression of a gain-of-function variant of the neurotransmitter receptor for glycine (GlyR) that is found in hippocampectomies from patients with temporal lobe epilepsy. In this mouse model, targeted expression of gain-of-function GlyR in terminals of glutamatergic cells or in parvalbumin-positive interneurons persistently altered neural network excitability. The increased network excitability associated with gain-of-function GlyR expression in glutamatergic neurons resulted in recurrent epileptiform discharge, which provoked cognitive dysfunction and memory deficits without affecting bidirectional synaptic plasticity. In contrast, decreased network excitability due to gain-of-function GlyR expression in parvalbumin-positive interneurons resulted in an anxiety phenotype, but did not affect cognitive performance or discriminative associative memory. Our animal model unveils neuron type-specific effects on cognition, formation of discriminative associative memory, and emotional behavior in vivo. Furthermore, our data identify a presynaptic disease-causing molecular mechanism that impairs homeostatic regulation of neural network excitability and triggers neuropsychiatric symptoms.