Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamar Farfel-Becker is active.

Publication


Featured researches published by Tamar Farfel-Becker.


Nature Medicine | 2014

RIPK3 as a potential therapeutic target for Gaucher's disease

Einat B. Vitner; Ran Salomon; Tamar Farfel-Becker; Anna Meshcheriakova; Mohammad Ali; Andrés D. Klein; Frances M. Platt; Timothy M. Cox; Anthony H. Futerman

Gauchers disease (GD), an inherited metabolic disorder caused by mutations in the glucocerebrosidase gene (GBA), is the most common lysosomal storage disease. Heterozygous mutations in GBA are a major risk factor for Parkinsons disease. GD is divided into three clinical subtypes based on the absence (type 1) or presence (types 2 and 3) of neurological signs. Type 1 GD was the first lysosomal storage disease (LSD) for which enzyme therapy became available, and although infusions of recombinant glucocerebrosidase (GCase) ameliorate the systemic effects of GD, the lack of efficacy for the neurological manifestations, along with the considerable expense and inconvenience of enzyme therapy for patients, renders the search for alternative or complementary therapies paramount. Glucosylceramide and glucosylsphingosine accumulation in the brain leads to massive neuronal loss in patients with neuronopathic GD (nGD) and in nGD mouse models. However, the mode of neuronal death is not known. Here, we show that modulating the receptor-interacting protein kinase-3 (Ripk3) pathway markedly improves neurological and systemic disease in a mouse model of GD. Notably, Ripk3 deficiency substantially improved the clinical course of GD mice, with increased survival and motor coordination and salutary effects on cerebral as well as hepatic injury.


Brain | 2012

Contribution of brain inflammation to neuronal cell death in neuronopathic forms of Gaucher's disease

Einat B. Vitner; Tamar Farfel-Becker; Raya Eilam; Inbal E. Biton; Anthony H. Futerman

Gauchers disease, the most common lysosomal storage disorder, is caused by the defective activity of glucocerebrosidase, the lysosomal hydrolase that degrades glucosylceramide. The neuronopathic forms of Gauchers disease are characterized by severe neuronal loss, astrocytosis and microglial proliferation, but the cellular and molecular pathways causing these changes are not known. In the current study, we delineate the role of neuroinflammation in the pathogenesis of neuronopathic Gauchers disease and show significant changes in levels of inflammatory mediators in the brain of a neuronopathic Gauchers disease mouse model. Levels of messenger RNA expression of interleukin -1β, tumour necrosis factor-α, tumour necrosis factor-α receptor, macrophage colony-stimulating factor and transforming growth factor-β were elevated by up to ∼30-fold, with the time-course of the increase correlating with the progression of disease severity. The most significant elevation was detected for the chemokines CCL2, CCL3 and CCL5. Blood-brain barrier disruption was also evident in mice with neuronopathic Gauchers disease. Finally, extensive elevation of nitrotyrosine, a hallmark of peroxynitrite (ONOO(-)) formation, was observed, consistent with oxidative damage caused by macrophage/microglia activation. Together, our results suggest a cytotoxic role for activated microglia in neuronopathic Gauchers disease. We suggest that once a critical threshold of glucosylceramide storage is reached in neurons, a signalling cascade is triggered that activates microglia, which in turn releases inflammatory cytokines that amplify the inflammatory response, contributing to neuronal death.


Human Molecular Genetics | 2014

Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration

Tamar Farfel-Becker; Einat B. Vitner; Samuel Kelly; Jessica R. Bame; Jingjing Duan; Vera Shinder; Alfred H. Merrill; Kostantin Dobrenis; Anthony H. Futerman

Gaucher disease has recently received wide attention due to the unexpected discovery that it is a genetic risk factor for Parkinsons disease. Gaucher disease is caused by the defective activity of the lysosomal enzyme, glucocerebrosidase (GCase; GBA1), resulting in intracellular accumulation of the glycosphingolipids, glucosylceramide and psychosine. The rare neuronopathic forms of GD (nGD) are characterized by profound neurological impairment and neuronal cell death. We have previously described the progression of neuropathological changes in a mouse model of nGD. We now examine the relationship between glycosphingolipid accumulation and initiation of pathology at two pre-symptomatic stages of the disease in four different brain areas which display differential degrees of susceptibility to GCase deficiency. Liquid chromatography electrospray ionization tandem mass spectrometry demonstrated glucosylceramide and psychosine accumulation in nGD brains prior to the appearance of neuroinflammation, although only glucosylceramide accumulation correlated with neuroinflammation and neuron loss. Levels of other sphingolipids, including the pro-apoptotic lipid, ceramide, were mostly unaltered. Transmission electron microscopy revealed that glucosylceramide accumulation occurs in neurons, mostly in the form of membrane-delimited pseudo-tubules located near the nucleus. Highly disrupted glucosylceramide-storing cells, which are likely degenerating neurons containing massive inclusions, numerous autophagosomes and unique ultrastructural features, were also observed. Together, our results indicate that a certain level of neuronal glucosylceramide storage is required to trigger neuropathological changes in affected brain areas, while other brain areas containing similar glucosylceramide levels are unaltered, presumably because of intrinsic differences in neuronal properties, or in the neuronal environment, between various brain regions.


Human Molecular Genetics | 2011

Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease

Tamar Farfel-Becker; Einat B. Vitner; Sarah N.R. Pressey; Raya Eilam; Jonathan D. Cooper; Anthony H. Futerman

Gaucher disease (GD), the most common lysosomal storage disorder, is caused by a deficiency in the lysosomal enzyme glucocerebrosidase (GlcCerase), which results in intracellular accumulation of glucosylceramide (GlcCer). The rare neuronopathic forms of GD are characterized by profound neurological impairment and neuronal cell death, but little is known about the neuropathological changes that underlie these events. We now systematically examine the onset and progression of various neuropathological changes (including microglial activation, astrogliosis and neuron loss) in a mouse model of neuronopathic GD, and document the brain areas that are first affected, which may reflect vulnerability of these areas to GlcCerase deficiency. We also identify neuropathological changes in several brain areas and pathways, such as the substantia nigra reticulata, reticulotegmental nucleus of the pons, cochlear nucleus and the somatosensory system, which could be responsible for some of the neurological manifestations of the human disease. In addition, we establish that microglial activation and astrogliosis are spatially and temporally correlated with selective neuron loss.


Disease Models & Mechanisms | 2011

Animal models for Gaucher disease research

Tamar Farfel-Becker; Einat B. Vitner; Anthony H. Futerman

Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display symptoms correlating with human disease and also died soon after birth. Recently, conditional knockout mice that mimic some features of the human disease have become available. Here, we review the contribution of all currently available animal models to examining pathological pathways underlying GD and to testing the efficacy of new treatment modalities, and propose a number of criteria for the generation of more appropriate animal models of GD.


Human Molecular Genetics | 2009

No evidence for activation of the unfolded protein response in neuronopathic models of Gaucher disease

Tamar Farfel-Becker; Einat B. Vitner; Hani Dekel; Noa Leshem; Ida Berglin Enquist; Stefan Karlsson; Anthony H. Futerman

Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by defects in the activity of the lysosomal enzyme, glucocerebrosidase, resulting in intracellular accumulation of glucosylceramide (GlcCer). Neuronopathic forms, which comprise only a small percent of GD patients, are characterized by neurological impairment and neuronal cell death. Little is known about the pathways leading from GlcCer accumulation to neuronal death or dysfunction but defective calcium homeostasis appears to be one of the pathways involved. Recently, endoplasmic reticulum stress together with activation of the unfolded protein response (UPR) has been suggested to play a key role in cell death in neuronopathic forms of GD, and moreover, the UPR was proposed to be a common mediator of apoptosis in LSDs (Wei et al. (2008) Hum. Mol. Genet. 17, 469-477). We now systematically examine whether the UPR is activated in neuronal forms of GD using a selection of neuronal disease models and a combination of western blotting and semi-quantitative and quantitative real-time polymerase chain reaction. We do not find any changes in either protein or mRNA levels of a number of typical UPR markers including BiP, CHOP, XBP1, Herp and GRP58, in either cultured Gaucher neurons or astrocytes, or in brain regions from mouse models, even at late symptomatic stages. We conclude that the proposition that the UPR is a common mediator for apoptosis in all neurodegenerative LSDs needs to be re-evaluated.


Human Molecular Genetics | 2010

Altered expression and distribution of cathepsins in neuronopathic forms of Gaucher disease and in other sphingolipidoses

Einat B. Vitner; Hani Dekel; Hila Zigdon; Tamar Shachar; Tamar Farfel-Becker; Raya Eilam; Stefan Karlsson; Anthony H. Futerman

The neuronopathic forms of the human inherited metabolic disorder, Gaucher disease (GD), are characterized by severe neuronal loss, astrogliosis and microglial proliferation, but the cellular and molecular pathways causing these changes are not known. Recently, a mouse model of neuronopathic GD was generated in which glucocerebrosidase deficiency is limited to neural and glial progenitor cells. We now show significant changes in the levels and in the distribution of cathepsins in the brain of this mouse model. Cathepsin mRNA expression was significantly elevated by up to approximately 10-fold, with the time-course of the increase correlating with the progression of disease severity. Cathepsin activity and protein levels were also elevated. Significant changes in cathepsin D distribution in the brain were detected, with cathepsin D elevated in areas where neuronal loss, astrogliosis and microgliosis were observed, such as in layer V of the cerebral cortex, the lateral globus pallidus and in various nuclei in the thalamus, brain regions known to be affected in the disease. Cathepsin D elevation was greatest in microglia and also noticeable in astrocytes. The distribution of cathepsin D was altered in neurons in a manner consistent with its release from the lysosome to the cytosol. Remarkably, ibubrofen treatment significantly reduced cathepsin D mRNA levels in the cortex of Gaucher mice. Finally, cathepsin levels were also altered in mouse models of a number of other sphingolipidoses. Our findings suggest the involvement of cathepsins in the neuropathology of neuronal forms of GD and of other lysosomal storage diseases, and are consistent with a crucial role for reactive microglia in neuronal degeneration in these diseases.


Journal of Neuroinflammation | 2016

Induction of the type I interferon response in neurological forms of Gaucher disease

Einat B. Vitner; Tamar Farfel-Becker; Natalia Santos Ferreira; Dena Leshkowitz; Piyush Sharma; Karl S. Lang; Anthony H. Futerman

BackgroundNeuroinflammation is a key phenomenon in the pathogenesis of many neurodegenerative diseases. Understanding the mechanisms by which brain inflammation is engaged and delineating the key players in the immune response and their contribution to brain pathology is of great importance for the identification of novel therapeutic targets for these devastating diseases. Gaucher disease, the most common lysosomal storage disease, is caused by mutations in the GBA1 gene and is a significant risk factor for Parkinson’s disease; in some forms of Gaucher disease, neuroinflammation is observed.MethodsAn unbiased gene profile analysis was performed on a severely affected brain area of a neurological form of a Gaucher disease mouse at a pre-symptomatic stage; the mouse used for this study, the Gbaflox/flox; nestin-Cre mouse, was engineered such that GBA1 deficiency is restricted to cells of neuronal lineage, i.e., neurons and macroglia.ResultsThe 10 most up-regulated genes in the ventral posteromedial/posterolateral region of the thalamus were inflammatory genes, with the gene expression signature significantly enriched in interferon signaling genes. Interferon β levels were elevated in neurons, and interferon-stimulated genes were elevated mainly in microglia. Interferon signaling pathways were elevated to a small extent in the brain of another lysosomal storage disease mouse model, Krabbe disease, but not in Niemann-Pick C or Sandhoff mouse brain. Ablation of the type I interferon receptor attenuated neuroinflammation but had no effect on GD mouse viability.ConclusionsOur results imply that the type I interferon response is involved in the development of nGD pathology, and possibly in other lysosomal storage diseases in which simple glycosphingolipids accumulate, and support the notion that interferon signaling pathways play a vital role in the sterile inflammation that often occurs during chronic neurodegenerative diseases in which neuroinflammation is present.


Journal of Cell Biology | 2018

Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons

Xiu-Tang Cheng; Yuxiang Xie; Bing Zhou; Ning Huang; Tamar Farfel-Becker; Zu-Hang Sheng

Despite widespread distribution of LAMP1 and the heterogeneous nature of LAMP1-labeled compartments, LAMP1 is routinely used as a lysosomal marker, and LAMP1-positive organelles are often referred to as lysosomes. In this study, we use immunoelectron microscopy and confocal imaging to provide quantitative analysis of LAMP1 distribution in various autophagic and endolysosomal organelles in neurons. Our study demonstrates that a significant portion of LAMP1-labeled organelles do not contain detectable lysosomal hydrolases including cathepsins D and B and glucocerebrosidase. A bovine serum albumin–gold pulse–chase assay followed by ultrastructural analysis suggests a heterogeneity of degradative capacity in LAMP1-labeled endolysosomal organelles. Gradient fractionation displays differential distribution patterns of LAMP1/2 and cathepsins D/B in neurons. We further reveal that LAMP1 intensity in familial amyotrophic lateral sclerosis–linked motor neurons does not necessarily reflect lysosomal deficits in vivo. Our study suggests that labeling a set of lysosomal hydrolases combined with various endolysosomal markers would be more accurate than simply relying on LAMP1/2 staining to assess neuronal lysosome distribution, trafficking, and functionality under physiological and pathological conditions.


Clinical Lipidology | 2010

Cellular pathogenesis in sphingolipid storage disorders: the quest for new therapeutic approaches

Tamar Farfel-Becker; Anthony H. Futerman

Abstract Lysosomal storage disorders are caused by the defective activity of lysosomal proteins, which results in the lysosomal accumulation of undegraded metabolites. Sphingolipid storage disorders are a subgroup of lysosomal storage disorders, in which unmetabolized sphingolipids and glycosphingolipids accumulate. Sphingolipid storage disorders are normally associated with devastating neurodegeneration and death at an early age. Despite years of study of the genetic and molecular bases of sphingolipid storage disorders, little is known about the events that lead from lipid accumulation to pathology. Research over the past few years has demonstrated that sphingolipid storage can result in multiple direct or indirect effects on various cellular compartments and on biochemical pathways. This article offers a guided tour through the cellular scenes that may be of relevance to sphingolipid storage disorder pathogenesis and to the development of new therapeutic approaches.

Collaboration


Dive into the Tamar Farfel-Becker's collaboration.

Top Co-Authors

Avatar

Anthony H. Futerman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Einat B. Vitner

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Raya Eilam

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Anna Meshcheriakova

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Hani Dekel

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Hila Zigdon

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bing Zhou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ning Huang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xiu-Tang Cheng

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge