Tamara A. Dailey
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tamara A. Dailey.
Cellular and Molecular Life Sciences | 2000
Harry A. Dailey; Tamara A. Dailey; Chia-Kuei Wu; Amy E. Medlock; John P. Rose; Kai-Fen Wang
Abstract. Ferrochelatase (E.C. 4.99.1.1, protoheme ferrolyase) catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme (heme). In the past 2 years, the crystal structures of ferrochelatases from the bacterium Bacillus subtilis and human have been determined. These structures along with years of biophysical and kinetic studies have led to a better understanding of the catalytic mechanism of ferrochelatase. At present, the complete DNA sequences of 45 ferrochelatases from procaryotes and eucaryotes are available. These sequences along with direct protein studies reveal that ferrochelatases, while related, vary significantly in amino acid sequence, molecular size, subunit composition, solubility, and the presence or absence of nitric-oxide-sensitive [2Fe-2S] cluster.
Protein Science | 2003
Chia-Kuei Wu; Tamara A. Dailey; Harry A. Dailey; Bi-Cheng Wang; John P. Rose
The crystal structure of recombinant rat augmenter of liver regeneration (ALRp) has been determined to 1.8 Å. The protein is a homodimer, stabilized by extensive noncovalent interactions and a network of hydrogen bonds, and possesses a noncovalently bound FAD in a motif previously found only in the related protein ERV2p. ALRp functions in vitro as a disulfide oxidase using dithiothreitol as reductant. Reduction of the flavin by DTT occurs under aerobic conditions resulting in a spectrum characteristic of a neutral semiquinone. This semiquinone is stable and is only fully reduced by addition of dithionite. Mutation of either of two cysteine residues that are located adjacent to the FAD results in inactivation of the oxidase activity. A comparison of ALRp with ERV2p is made that reveals a number of significant structural differences, which are related to the in vivo functions of these two proteins. Possible physiological roles of ALR are examined and a hypothesis that it may serve multiple roles is proposed.
Journal of Medical Genetics | 2004
Sharon D. Whatley; Nicola G. Mason; M. Khan; M. Zamiri; Michael Norman Badminton; W. N. Missaoui; Tamara A. Dailey; Harry A. Dailey; W. S. Douglas; N. J. Wainwright; George H. Elder
Erythropoietic protoporphyria (EPP; MIM 177000) is an inherited disorder of haem biosynthesis characterised by the onset in early childhood of lifelong acute photosensitivity of sun-exposed skin.1 It results from partial deficiency of ferrochelatase (FECH; E.C. 4.99.1.1.), which leads to accumulation of protoporphyrin IX in erythrocytes, plasma, skin, and liver. Up to 35% of patients have mildly abnormal biochemical tests of liver function, while liver failure caused by the hepatotoxic action of protoporphyrin complicates about 2% of cases.2–5 Over 70 mutations in the FECH gene have been identified in EPP families (Human Gene Mutation Database: http://www.hgmd.org/).6–10 Most individuals who are heterozygous for these mutations are asymptomatic, despite having half-normal FECH activities.11 For protoporphyrin to accumulate sufficiently to cause photosensitivity, reduction of FECH activity to below a critical threshold of about 35% of normal is required.11–14 In most patients, this additional reduction results from inheritance of a low expression FECH allele trans to a severe mutation.10,15–18 The low expression allele is the C variant of a single nucleotide polymorphism (SNP; IVS3-48C/T) in intron 3 of the FECH gene.18 Because the IVS3-48C allele is common in the general population, being present in about 11% of the white inhabitants of France,18 inheritance trans to a severe FECH mutation occurs within EPP families at a frequency that is high enough to produce a pattern of inheritance of overt EPP resembling an autosomal dominant disease with incomplete penetrance. Although co-inheritance of an IVS3-48C allele appears to explain the occurrence of photosensitivity in most EPP families,8,10,17,18 alternative mechanisms may reduce FECH activity to below threshold activity in some patients. These include autosomal recessive inheritance with an FECH mutation on both alleles,15,19–23 deletion of an FECH gene …
Journal of Biological Chemistry | 1998
Tamara A. Dailey; Harry A. Dailey
A large number of FAD-containing proteins have previously been shown to contain a signature sequence that is referred to as the dinucleotide binding motif. Protoporphyrinogen oxidase (PPO), the penultimate enzyme of the heme biosynthetic pathway, is an FAD-containing protein that catalyzes the six electron oxidation of protoporphyrinogen IX. Sequence analysis demonstrates the presence of the dinucleotide binding motif at the amino-terminal end of the protein. Analysis of the current data base reveals that PPO has significant sequence similarities to mammalian monoamine oxidases (MAO) A and B, as well as to bacterial and plant phytoene desaturases (PHD). Previously MAOs have been shown to contain FAD, but there are no publications demonstrating the presence of FAD in purified PHDs. We have carried out the expression and purification of PHD from the bacterium Myxococcus xanthus and demonstrate the presence of noncovalently bound FAD. Sequence analysis demonstrate that PPO is closely related to bacterial PHDs and more distantly to plant PHDs and animal MAOs. Interestingly bacterial MAOs are no more closely related to PPOs, PHDs, and animal MAO’s than they are to the unrelatedPseudomonas phenyl hydroxylase. All of the related sequences contain not only the basic putative dinucleotide binding motif that is found frequently for FAD-binding proteins, but they also have high similarity in an approximately 60-residue long region that extends beyond the dinucleotide motif. This region is not found among any other proteins in the current data base and, therefore, we propose that this region is a signature motif for a superfamily of FAD-containing enzymes that is comprised of PPOs, animal MAOs, and PHDs.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Amy E. Medlock; Larkin Swartz; Tamara A. Dailey; Harry A. Dailey; William N. Lanzilotta
Ferrochelatase, the terminal enzyme in heme biosynthesis, catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme IX. Human ferrochelatase is a homodimeric, inner mitochondrial membrane-associated enzyme that possesses an essential [2Fe-2S] cluster. In this work, we report the crystal structure of human ferrochelatase with the substrate protoporphyrin IX bound as well as a higher resolution structure of the R115L variant without bound substrate. The data presented reveal that the porphyrin substrate is bound deep within an enclosed pocket. When compared with the location of N-methylmesoporphyrin in the Bacillus subtilis ferrochelatase, the porphyrin is rotated by ≈100° and is buried an additional 4.5 Å deeper within the active site. The propionate groups of the substrate do not protrude into solvent and are bound in a manner similar to what has been observed in uroporphyrinogen decarboxylase. Furthermore, in the substrate-bound form, the jaws of the active site mouth are closed so that the porphyrin substrate is completely engulfed in the pocket. These data provide insights that will aid in the determination of the mechanism for ferrochelatase.
Archives of Biochemistry and Biophysics | 2002
B Jacob Blackmon; Tamara A. Dailey; Xiao Lianchun; Harry A. Dailey
The cDNA for p22HBP has been cloned from human and mouse, and the protein expressed, purified, and characterized. Both mouse and human proteins bind heme and porphyrins with micromolar K(d)s, are highly homologous, monomeric, and soluble, and have a cytoplasmic location. The proteins bind metalloporphyrins, free porphyrins, and N-methylprotoporphyrin with similar affinities, and mutations of a selected set of putative metal ligating residues did not have any significant effect on the measured K(d)s. That the presence or absence of metal in the porphyrin has no effect on the binding constants and the observation that the EPR signal for heme does not change upon binding to the protein strongly suggest that p22HBP is a generic tetrapyrrole-binding protein rather than a dedicated heme-binding protein. A role for p22HBP in cellular porphyrin metabolism is discussed.
Biochimica et Biophysica Acta | 1999
Amy E. Burden; Chia-Kuei Wu; Tamara A. Dailey; Johanneke L.H Busch; Ish K. Dhawan; John P. Rose; Bi-Cheng Wang; Harry A. Dailey
Ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) catalyzes the terminal step in the heme biosynthetic pathway, the insertion of ferrous iron into protoporphyrin IX to form protoheme IX. Previously we have demonstrated that the mammalian enzyme is associated with the inner surface of the inner mitochondrial membrane and contains a nitric oxide sensitive [2Fe-2S] cluster that is coordinated by four Cys residues whose spacing in the primary sequence is unique to animal ferrochelatase. We report here the characterization and crystallization of recombinant human ferrochelatase with an intact [2Fe-2S] cluster. Gel filtration chromatography and dynamic light scattering measurements revealed that the purified recombinant human ferrochelatase in detergent solution is a homodimer. EPR redox titrations of the enzyme yield a midpoint potential of -453+/-10 mV for the [2Fe-2S] cluster. The form of the protein that was crystallized has a single Arg to Leu substitution. This mutation has no detectable effect on enzyme activity but is critical for crystallization. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell constants of a=93.5 A, b=87.7 A, and c=110.2 A. There are two molecules in the asymmetric unit and the crystals diffract to better than 2.0 A resolution. The Fe to Fe distance of the [2Fe-2S] cluster is calculated to be 2.7 A based upon the Bijvoet difference Patterson map.
Journal of Biological Chemistry | 1996
Harry A. Dailey; Tamara A. Dailey
Protoporphyrinogen oxidase (EC 1.3.3.4) catalyzes the six electron oxidation of protoporphyrinogen IX to protoporphyrin IX. The enzyme from the bacterium Myxococcus xanthus has been cloned, expressed, purified, and characterized. The protein has been expressed in Escherichia coli using a Tac promoter-driven expression plasmid and purified to apparent homogeneity in a rapid procedure that yields approximately 10 mg of purified protein per liter of culture. Based upon the deduced amino acid sequence the molecular weight of a single subunit is 49,387. Gel permeation chromatography in the presence of 0.2% n-octyl-β-D-glucopyranoside yields a molecular weight of approximately 100,000 while SDS gel electrophoresis shows a single band at 50,000. The native enzyme is, thus, a homodimer. The purified protein contains a non-covalently bound FAD but no detectable redox active metal. The M. xanthus enzyme utilizes protoporphyrinogen IX, but not coproporphyrinogen III, as substrate and produces 3 mol of HO/mol of protoporphyrin. The apparent K and k for protoporphyrinogen in assays under atmospheric concentrations of oxygen are 1.6 μM and 5.2 min, respectively. The diphenyl ether herbicide acifluorfen at 1 μM strongly inhibits the enzymes activity.
Biochemical Journal | 2005
Tamara A. Dailey; John H. Woodruff; Harry A. Dailey
The initial and the terminal three enzymes of the mammalian haem biosynthetic pathway are nuclear encoded, cytoplasmically synthesized and post-translationally translocated into the mitochondrion. The first enzyme, ALAS (5-aminolaevulinate synthase), occurs as an isoenzyme encoded on different chromosomes and is synthesized either as a housekeeping protein (ALAS-1) in all non-erythroid cell types, or only in differentiating erythroid precursor cells (ALAS-2). Both ALAS proteins possess mitochondrial targeting sequences that have putative haem-binding motifs. In the present study, evidence is presented demonstrating that two haem-binding motifs in the leader sequence, as well as one present in the N-terminus of the mature ALAS-1 function in vivo in the haem-regulated translocation of ALAS-1. Coproporphyrinogen oxidase, the antepenultimate pathway enzyme, possesses a leader sequence that is approx. 120 residues long. In contrast with an earlier report suggesting that only 30 residues were required for translocation of the coproporphyrinogen oxidase, we report that the complete leader is necessary for translocation and that this process is not haem-sensitive in vivo. PPO (protoporphyrinogen oxidase) lacks a typical mitochondrial targeting leader sequence and was found to be effectively targeted by just 17 N-terminal residues. Bacillus subtilis PPO, which is very similar to human PPO at its N-terminal end, is not targeted to the mitochondrion when expressed in mammalian cells, demonstrating that the translocation is highly specific with regard to both the length and spacing of charged residues in this targeting region. Ferrochelatase, the terminal enzyme, possesses a typical N-terminal leader sequence and no evidence of a role for the C-terminus was found in mitochondrial targeting.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Harry A. Dailey; Svetlana Gerdes; Tamara A. Dailey; Joseph S. Burch; John D. Phillips
Significance It has been accepted dogma that eukaryotes and heme-synthesizing bacteria use the same metabolic intermediates in their heme synthesis pathways, where protoporphyrin is the final intermediate into which iron is inserted to make protoheme. Herein, we present data demonstrating that Gram-positive bacteria do not use protoporphyrin as an intermediate but, instead, have an altered set of terminal reactions that oxidize coproporphyrinogen to coproporphyrin and insert ferrous iron into coproporphyrin, resulting in the formation of coproheme. A newly characterized enzyme, HemQ, decarboxylates coproheme to generate protoheme. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens. It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, they oxidize coproporphyrinogen to coproporphyrin, insert ferrous iron to make Fe-coproporphyrin (coproheme), and then decarboxylate coproheme to generate protoheme. This pathway is specified by three genes named hemY, hemH, and hemQ. The analysis of 982 representative prokaryotic genomes is consistent with this pathway being the most ancient heme synthesis pathway in the Eubacteria. Our results identifying a previously unknown branch of tetrapyrrole synthesis support a significant shift from current models for the evolution of bacterial heme and chlorophyll synthesis. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens.