Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamara Hermida-Gómez is active.

Publication


Featured researches published by Tamara Hermida-Gómez.


BMC Musculoskeletal Disorders | 2012

Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes.

Silvia Díaz-Prado; C. Cicione; Emma Muiños-López; Tamara Hermida-Gómez; Natividad Oreiro; Carlos Fernández-López; F.J. Blanco

BackgroundOsteoarthritis (OA) is a multifactorial disease characterized by destruction of the articular cartilage due to environmental, mechanical and genetic components. The genetics of OA is complex and is not completely understood. Recent works have demonstrated the importance of microRNAs (miRNAs) in cartilage function. MiRNAs are a class of small noncoding RNAs that regulate gene expression and are involved in different cellular process: apoptosis, proliferation, development, glucose and lipid metabolism. The aim of this study was to identify and characterize the expression profile of miRNAs in normal and OA chondrocytes and to determine their role in the OA.MethodsChondrocytes were moved to aggregate culture and evaluated using histological and qPCR techniques. miRNAs were isolated and analyzed using the Agilent Human miRNA Microarray.ResultsOf the 723 miRNAs analyzed, 7 miRNAs showed a statistically significant differential expression. Amongst these 7 human miRNAs, 1 was up-regulated in OA chondrocytes (hsa-miR-483-5p) and 6 were up-regulated in normal chondrocytes (hsa-miR-149*, hsa-miR-582-3p, hsa-miR-1227, hsa-miR-634, hsa-miR-576-5p and hsa-miR-641). These profiling results were validated by the detection of some selected miRNAs by qPCR. In silico analyses predicted that key molecular pathways potentially altered by the miRNAs differentially expressed in normal and OA chondrocytes include TGF-beta, Wnt, Erb and mTOR signalling; all of them implicated in the development, maintenance and destruction of articular cartilage.ConclusionsWe have identified 7 miRNAs differentially expressed in OA and normal chondrocytes. Our potential miRNA target predictions and the signalling cascades altered by the differentially expressed miRNAs supports the potential involvement of the detected miRNAs in OA pathology. Due to the importance of miRNA in mediating the translation of target mRNA into protein, the identification of these miRNAs differentially expressed in normal and OA chondrocyte micropellets could have important diagnostic and therapeutic potential. Further studies are needed to know the function of these miRNAs, including the search of their target mRNA genes, which could lead to the development of novel therapeutic strategies for the OA treatment.


Journal of Cellular Biochemistry | 2010

Multilineage differentiation potential of cells isolated from the human amniotic membrane

Silvia Díaz-Prado; Emma Muiños-López; Tamara Hermida-Gómez; Maria Esther Rendal-Vázquez; Isaac Fuentes-Boquete; Francisco J. de Toro; Francisco Blanco

The human amniotic membrane (HAM) contains two cell types from different embryological origins. Human amnion epithelial cells (hAECs) are derived from the embryonic ectoderm, while human amnion mesenchymal stromal cells (hAMSCs) are derived from the embryonic mesoderm. In this study, we localized, isolated, quantified and phenotypically characterized HAM‐derived cells and analysed their in vitro differentiation potential towards mesodermal cell lineages. Human amnion‐derived cells were isolated and characterized by flow cytometry. Immunohistochemistry and quantitative real‐time reverse transcription‐polymerase chain reaction studies were performed for the analysis of multipotentiality. Immunophenotypic characterization of both cell types demonstrated the presence of the common, well‐defined human mesenchymal stem cell (MSC) markers (CD90, CD44, CD73, CD166, CD105, CD29), as well as the embryonic stem‐cell markers SSEA‐4 and STRO‐1. Phenotypes of both cell populations were maintained from passages P0 to P9. The assessment of multilineage potential demonstrated that the hAMSCs showed greater adipogenic and chondrogenic potential. Both populations had the ability to retain their capacity for differentiation during culture passages from P0 to P4. Our data demonstrate the successful localization and isolation of hAMSCs and hAECs from the HAM. Both cell populations possessed similar immunophenotype. However, they differed in cell yield and multipotential for differentiation into the major mesodermal lineages. Our functional differentiation studies demonstrated that hAMSCs possess a much greater mesodermal differentiation capacity than hAECs. These considerations will be important for use of these cells for cell therapy. J. Cell. Biochem. 111: 846–857, 2010.


Differentiation | 2011

Human amniotic membrane as an alternative source of stem cells for regenerative medicine

Silvia Díaz-Prado; Emma Muiños-López; Tamara Hermida-Gómez; C. Cicione; M.Esther Rendal-Vázquez; Isaac Fuentes-Boquete; Francisco J. de Toro; Francisco Blanco

The human amniotic membrane (HAM) is a highly abundant and readily available tissue. This amniotic tissue has considerable advantageous characteristics to be considered as an attractive material in the field of regenerative medicine. It has low immunogenicity, anti-inflammatory properties and their cells can be isolated without the sacrifice of human embryos. Since it is discarded post-partum it may be useful for regenerative medicine and cell therapy. Amniotic membranes have already been used extensively as biologic dressings in ophthalmic, abdominal and plastic surgery. HAM contains two cell types, from different embryological origins, which display some characteristic properties of stem cells. Human amnion epithelial cells (hAECs) are derived from the embryonic ectoderm, while human amnion mesenchymal stromal cells (hAMSCs) are derived from the embryonic mesoderm. Both populations have similar immunophenotype and multipotential for in vitro differentiation into the major mesodermal lineages, however they differ in cell yield. Therefore, HAM has been proposed as a good candidate to be used in cell therapy or regenerative medicine to treat damaged or diseased tissues.


The Journal of Rheumatology | 2011

Quantification of Cells Expressing Mesenchymal Stem Cell Markers in Healthy and Osteoarthritic Synovial Membranes

Tamara Hermida-Gómez; Isaac Fuentes-Boquete; Maria José Gimeno-Longas; Emma Muiños-López; Silvia Díaz-Prado; Francisco J. de Toro; F.J. Blanco

Objective. To quantify cells expressing mesenchymal stem cell (MSC) markers in synovial membranes from human osteoarthritic (OA) and healthy joints. Methods. Synovial membranes from OA and healthy joints were digested with collagenase and the isolated cells were cultured. Synovial membrane-derived cells were phenotypically characterized for differentiation experiments using flow cytometry to detect the expression of mesenchymal markers (CD29, CD44, CD73, CD90, CD105, CD117, CD166, and STRO-1) and hematopoietic markers (CD34 and CD45). Chondrogenesis was assessed by staining for proteoglycans and collagen type II, adipogenesis by using a stain for lipids, and osteogenesis by detecting calcium deposits. Coexpression of CD44, CD73, CD90, and CD105 was determined using immunofluorescence. Results. Cells expressing MSC markers were diffusely distributed in OA synovial membranes; in healthy synovial membrane these cells were localized in the subintimal zone. More numerous MSC markers in OA synovial membranes were observed in cells also expressing the CD90 antigen. FACS analysis showed that more than 90% of OA synovial membrane-derived cells were positive for CD44, CD73, and CD90, and negative for CD34 and CD45. OA synovial membrane-derived cells were also positive for CD29 (85.23%), CD117 (72.35%), CD105 (45.5%), and STRO-1 (49.46%). Micropellet analyses showed that the culture of cells with transforming growth factor-ß3 stimulated proteoglycan and collagen type II synthesis. Conclusion. Synovial membranes from patients with OA contain more cells positive for CD44, CD90, and CD105 antigens than those from joints with undamaged cartilage.


Stem Cells International | 2013

Effects of Severe Hypoxia on Bone Marrow Mesenchymal Stem Cells Differentiation Potential

C. Cicione; Emma Muiños-López; Tamara Hermida-Gómez; Isaac Fuentes-Boquete; Silvia Díaz-Prado; F.J. Blanco

Background. The interests in mesenchymal stem cells (MSCs) and their application in cell therapy have resulted in a better understanding of the basic biology of these cells. Recently hypoxia has been indicated as crucial for complete chondrogenesis. We aimed at analyzing bone marrow MSCs (BM-MSCs) differentiation capacity under normoxic and severe hypoxic culture conditions. Methods. MSCs were characterized by flow cytometry and differentiated towards adipocytes, osteoblasts, and chondrocytes under normoxic or severe hypoxic conditions. The differentiations were confirmed comparing each treated point with a control point made of cells grown in DMEM and fetal bovine serum (FBS). Results. BM-MSCs from the donors displayed only few phenotypical differences in surface antigens expressions. Analyzing marker genes expression levels of the treated cells compared to their control point for each lineage showed a good differentiation in normoxic conditions and the absence of this differentiation capacity in severe hypoxic cultures. Conclusions. In our experimental conditions, severe hypoxia affects the in vitro differentiation potential of BM-MSCs. Adipogenic, osteogenic, and chondrogenic differentiations are absent in severe hypoxic conditions. Our work underlines that severe hypoxia slows cell differentiation by means of molecular mechanisms since a decrease in the expression of adipocyte-, osteoblast-, and chondrocyte-specific genes was observed.


Differentiation | 2010

Molecular profile and cellular characterization of human bone marrow mesenchymal stem cells: donor influence on chondrogenesis.

C. Cicione; Silvia Díaz-Prado; Emma Muiños-López; Tamara Hermida-Gómez; Francisco Blanco

BACKGROUND The use of autologous or allogenic stem cells has recently been suggested as an alternative therapeutic approach for treatment of cartilage defects. Bone marrow mesenchymal stem cells (BM-MSCs) are well-characterized multipotent cells that can differentiate into different cell types. Understanding the potential of these cells and the molecular mechanisms underlying their differentiation should lead to innovative protocols for clinical applications. The aim of this study was to evaluate the usefulness of surface antigen selection of BM-MSCs and to understand the mechanisms underlying their differentiation. METHODS MSCs were isolated from BM stroma and expanded. CD105+ subpopulation was isolated using a magnetic separator. We compared culture-expanded selected cells with non-selected cells. We analyzed the phenotypic profiles, the expression of the stem cell marker genes Nanog, Oct3/4, and Sox2 and the multi-lineage differentiation potential (adipogenic, osteogenic, and chondrogenic). The multi-lineage differentiation was confirmed using histochemistry, immunohistochemistry and/or real-time polymerase chain reaction (qPCR) techniques. RESULTS The selected and non-selected cells displayed similar phenotypes and multi-lineage differentiation potentials. Analyzing each cell source individually, we could divide the six donors into two groups: one with a high percentage of CD29 (β1-integrin) expression (HL); one with a low percentage of CD29 (LL). These two groups had different chondrogenic capacities and different expression levels of the stem cell marker genes. CONCLUSIONS This study showed that phenotypic profiles of donors were related to the chondrogenic potential of human BM-MSCs. The chondrogenic potential of donors was related to CD29 expression levels. The high expression of CD29 antigen seemed necessary for chondrogenic differentiation. Further investigation into the mechanisms responsible for these differences in BM-MSCs chondrogenesis is therefore warranted. Understanding the mechanisms for these differences will contribute to improved clinical use of autologous human BM-MSCs for articular cartilage repair.


The Open Orthopaedics Journal | 2012

Cryopreservation Effect on Proliferative and Chondrogenic Potential of Human Chondrocytes Isolated from Superficial and Deep Cartilage

Emma Muiños-López; Mª Esther Rendal-Vázquez; Tamara Hermida-Gómez; Isaac Fuentes-Boquete; Silvia Díaz-Prado; F.J. Blanco

Objectives: To compare the proliferative and chondrogenic potential of fresh and frozen chondrocytes isolated from superficial and deep articular cartilage biopsies. Materials and Methodology: The study included 12 samples of fresh and frozen healthy human knee articular cartilage. Cell proliferation was tested at 3, 6 and 9 days. Studies of mRNA quantification, protein expression and immunofluorescence for proliferation and chondrogenic markers were performed. Results: Stimulation of fresh and frozen chondrocytes from both superficial and deep cartilage with fetal bovine serum produced an increase in the proliferative capacity compared to the non-stimulated control group. In the stimulated fresh cells group, the proliferative capacity of cells from the deep biopsy was greater than that from cells from the superficial biopsy (0.046 vs 0.028, respectively, p<0.05). There was also a significant difference between the proliferative capacity of superficial zone fresh (0.028) and frozen (0.051) chondrocytes (p<0.05). CCND1 mRNA and protein expression levels, and immunopositivity for Ki67 revealed a higher proliferative capacity for fresh articular chondrocytes from deep cartilage. Regarding the chondrogenic potential, stimulated fresh cells showed higher SOX9 and Col II expression in chondrocytes from deep than from superficial zone (p<0.05, T student test). Conclusions: The highest rate of cell proliferation and chondrogenic potential of fresh chondrocytes was found in cells obtained from deep cartilage biopsies, whereas there were no statistically significant differences in proliferative and chondrogenic capacity between biopsy origins with frozen chondrocytes. These results indicate that both origin and cryopreservation affect the proliferative and chondrogenic potential of chondrocytes.


Annals of the Rheumatic Diseases | 2017

Mitochondrial DNA haplogroups influence the risk of incident knee osteoarthritis in OAI and CHECK cohorts. A meta-analysis and functional study

M. Fernández-Moreno; A. Soto-Hermida; M.E. Vázquez-Mosquera; E. Cortés-Pereira; Sara Relaño; Tamara Hermida-Gómez; Sonia Pértega; Natividad Oreiro-Villar; Carlos Fernández-López; Rafael Garesse; F.J. Blanco; Ignacio Rego-Pérez

Objective To evaluate the influence of the mitochondrial DNA (mtDNA) haplogroups in the risk of incident knee osteoarthritis (OA) and to explain the functional consequences of this association to identify potential diagnostic biomarkers and therapeutic targets. Methods Two prospective cohorts contributed participants. The osteoarthritis initiative (OAI) included 2579 subjects of the incidence subcohort, and the cohort hip and cohort knee (CHECK) included 635, both with 8-year follow-up. The analysis included the association of mtDNA haplogroups with the rate of incident knee OA in subjects from both cohorts followed by a subsequent meta-analysis. Transmitochondrial cybrids harbouring haplogroup J or H were constructed to detect differences between them in relation to physiological features including specific mitochondrial metabolic parameters, reactive oxygen species production, oxidative stress and apoptosis. Results Compared with H, the haplogroup J associates with decreased risk of incident knee OA in subjects from OAI (HR=0.680; 95% CI 0.470 to 0.968; p<0.05) and CHECK (HR=0.728; 95% CI 0.469 to 0.998; p<0.05). The subsequent meta-analysis including 3214 cases showed that the haplogroup J associates with a lower risk of incident knee OA (HR=0.702; 95% CI 0.541 to 0.912; p=0.008). J cybrids show a lower free radical production, higher cell survival under oxidative stress conditions, lower grade of apoptosis as well as lower expression of the mitochondrially related pro-apoptotic gene BCL2 binding component 3 (BBC3). In addition, J cybrids also show a lower mitochondrial respiration and glycolysis leading to decreased ATP production. Conclusions The physiological effects of the haplogroup J are beneficial to have a lower rate of incident knee OA over time. Potential drugs to treat OA could focus on emulating the mitochondrial behaviour of this haplogroup.


PLOS ONE | 2017

Ovine Mesenchymal Stromal Cells: Morphologic, Phenotypic and Functional Characterization for Osteochondral Tissue Engineering

Clara Sanjurjo-Rodríguez; Rocío Castro-Viñuelas; Tamara Hermida-Gómez; Tania Fernández-Vázquez; Isaac Fuentes-Boquete; Francisco Javier de Toro-Santos; Silvia Díaz-Prado; Francisco Javier Blanco-García

Introduction Knowledge of ovine mesenchymal stromal cells (oMSCs) is currently expanding. Tissue engineering combining scaffolding with oMSCs provides promising therapies for the treatment of osteochondral diseases. Purpose The aim was to isolate and characterize oMSCs from bone marrow aspirates (oBMSCs) and to assess their usefulness for osteochondral repair using β-tricalcium phosphate (bTCP) and type I collagen (Col I) scaffolds. Methods Cells isolated from ovine bone marrow were characterized morphologically, phenotypically, and functionally. oBMSCs were cultured with osteogenic medium on bTCP and Col I scaffolds. The resulting constructs were evaluated by histology, immunohistochemistry and electron microscopy studies. Furthermore, oBMSCs were cultured on Col I scaffolds to develop an in vitro cartilage repair model that was assessed using a modified International Cartilage Research Society (ICRS) II scale. Results oBMSCs presented morphology, surface marker pattern and multipotent capacities similar to those of human BMSCs. oBMSCs seeded on Col I gave rise to osteogenic neotissue. Assessment by the modified ICRS II scale revealed that fibrocartilage/hyaline cartilage was obtained in the in vitro repair model. Conclusions The isolated ovine cells were demonstrated to be oBMSCs. oBMSCs cultured on Col I sponges successfully synthesized osteochondral tissue. The data suggest that oBMSCs have potential for use in preclinical models prior to human clinical studies.


Histology and Histopathology | 2016

Differentiation of human mesenchymal stromal cells cultured on collagen sponges for cartilage repair

Clara Sanjurjo-Rodríguez; A.H. Martínez-Sánchez; Tamara Hermida-Gómez; Isaac Fuentes-Boquete; Silvia Díaz-Prado; F.J. Blanco

AIM The aim of this study was to evaluate proliferation and chondrogenic differentiation of human bone-marrow mesenchymal stromal cells (hBMSCs) cultured on collagen biomaterials. MATERIALS AND METHODS hBMSCs were seeded on five different collagen (Col) sponges: C1C2 (types I and II Col), C1C2HS (types I and II Col plus heparan sulphate (HS)), C1C2CHS (types I and II Col plus chondroitin sulphate (CHS)), C1-OLH3 (type I Col plus low molecular weight heparin) and C1CHS (type I Col plus CHS). The resulting constructs were analyzed by histological and immunohistochemical staining, molecular biology and electron microscopy. Col released into culture media was measured by a dye-binding method Results: hBMSCs on biomaterials C1C2, C1C2HS and C1C2CHS had more capacity to attach, proliferate and synthesize Col II and proteoglycans in the extracellular matrix (ECM) than on C1-OLH3 and C1CHS. The presence of aggrecan was detected only at the gene level. Total Col liberated by the cells in the supernatants in all scaffold cultures was detected. The level of Col I in the ECM was lower in C1-OLH3 and that of Col II was highest in C1C2 and C1C2HS. Electron microscopy showed differently shaped cells, from rounded to flattened, in all constructs. Col fibers in bundles were observed in C1C2CHS by transmission electron microscopy. CONCLUSIONS The results show that Col I and Col II (C1C2, C1C2HS and C1C2CHS) biomaterials allowed cell proliferation and chondrogenic-like differentiation of hBMSCs at an early stage. Constructs cultured on C1C2HS and C1C2CHS showed better cartilage-like phenotype than the other ones.

Collaboration


Dive into the Tamara Hermida-Gómez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

F.J. Blanco

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F.J. De Toro

University of A Coruña

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Fernández-Moreno

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge