Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamara Kanashova is active.

Publication


Featured researches published by Tamara Kanashova.


PLOS ONE | 2015

Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions

Sebastian Oeder; Tamara Kanashova; Olli Sippula; Sean C. Sapcariu; Thorsten Streibel; Jose M. Arteaga-Salas; Johannes Passig; M. Dilger; Hanns-Rudolf Paur; C. Schlager; S. Mülhopt; S. Diabate; Carsten Weiss; Benjamin Stengel; R. Rabe; Horst Harndorf; Tiina Torvela; Jorma Jokiniemi; Maija-Riitta Hirvonen; Carsten B. Schmidt-Weber; Claudia Traidl-Hoffmann; Kelly Ann Berube; Anna Julia Wlodarczyk; Zoe Cariad Prytherch; Bernhard Michalke; T. Krebs; André S. H. Prévôt; Michael Kelbg; Josef Tiggesbäumker; Erwin Karg

Background Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. Objectives To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. Methods Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. Results The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. Conclusions Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices.


MethodsX | 2014

Simultaneous extraction of proteins and metabolites from cells in culture

Sean C. Sapcariu; Tamara Kanashova; Daniel Weindl; Jenny Ghelfi; Gunnar Dittmar; Karsten Hiller

Graphical abstract Three-phase methanol–water–chloroform extraction for biological samples. Examples of components available from each phase are shown. These different phases can be then used for a variety of different analysis methods on different levels of cellular regulation.


Nature | 2017

Senescence-associated reprogramming promotes cancer stemness

Maja Milanovic; Dorothy N.Y. Fan; Dimitri Belenki; J. Henry M. Däbritz; Zhen Zhao; Yong Yu; Jan R. Dörr; Lora Dimitrova; Dido Lenze; Inês Barbosa; Marco Antonio Mendoza-Parra; Tamara Kanashova; Marlen Metzner; Katharina Pardon; Maurice Reimann; Andreas Trumpp; Bernd Dörken; Johannes Zuber; Hinrich Gronemeyer; Michael Hummel; Gunnar Dittmar; Soyoung Lee; Clemens A. Schmitt

Cellular senescence is a stress-responsive cell-cycle arrest program that terminates the further expansion of (pre-)malignant cells. Key signalling components of the senescence machinery, such as p16INK4a, p21CIP1 and p53, as well as trimethylation of lysine 9 at histone H3 (H3K9me3), also operate as critical regulators of stem-cell functions (which are collectively termed ‘stemness’). In cancer cells, a gain of stemness may have profound implications for tumour aggressiveness and clinical outcome. Here we investigated whether chemotherapy-induced senescence could change stem-cell-related properties of malignant cells. Gene expression and functional analyses comparing senescent and non-senescent B-cell lymphomas from Eμ-Myc transgenic mice revealed substantial upregulation of an adult tissue stem-cell signature, activated Wnt signalling, and distinct stem-cell markers in senescence. Using genetically switchable models of senescence targeting H3K9me3 or p53 to mimic spontaneous escape from the arrested condition, we found that cells released from senescence re-entered the cell cycle with strongly enhanced and Wnt-dependent clonogenic growth potential compared to virtually identical populations that had been equally exposed to chemotherapy but had never been senescent. In vivo, these previously senescent cells presented with a much higher tumour initiation potential. Notably, the temporary enforcement of senescence in p53-regulatable models of acute lymphoblastic leukaemia and acute myeloid leukaemia was found to reprogram non-stem bulk leukaemia cells into self-renewing, leukaemia-initiating stem cells. Our data, which are further supported by consistent results in human cancer cell lines and primary samples of human haematological malignancies, reveal that senescence-associated stemness is an unexpected, cell-autonomous feature that exerts its detrimental, highly aggressive growth potential upon escape from cell-cycle blockade, and is enriched in relapse tumours. These findings have profound implications for cancer therapy, and provide new mechanistic insights into the plasticity of cancer cells.


Journal of Cachexia, Sarcopenia and Muscle | 2016

Muscle RING‐finger 2 and 3 maintain striated‐muscle structure and function

Dörte Lodka; Aanchal Pahuja; Cornelia Geers-Knörr; Renate J. Scheibe; Marcel Nowak; Jida Hamati; Clemens Köhncke; Bettina Purfürst; Tamara Kanashova; Sibylle Schmidt; David J. Glass; Ingo Morano; Arnd Heuser; Theresia Kraft; Rhonda Bassel-Duby; Eric N. Olson; Gunnar Dittmar; Thomas Sommer; Jens Fielitz

The Muscle‐specific RING‐finger (MuRF) protein family of E3 ubiquitin ligases is important for maintenance of muscular structure and function. MuRF proteins mediate adaptation of striated muscles to stress. MuRF2 and MuRF3 bind to microtubules and are implicated in sarcomere formation with noticeable functional redundancy. However, if this redundancy is important for muscle function in vivo is unknown. Our objective was to investigate cooperative function of MuRF2 and MuRF3 in the skeletal muscle and the heart in vivo.


PLOS ONE | 2016

Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel.

Sean C. Sapcariu; Tamara Kanashova; M. Dilger; S. Diabate; Sebastian Oeder; Johannes Passig; C. Radischat; Jeroen Buters; Olli Sippula; Thorsten Streibel; Hanns-Rudolf Paur; C. Schlager; S. Mülhopt; Benjamin Stengel; R. Rabe; Horst Harndorf; T. Krebs; Erwin Karg; Thomas Gröger; Carsten Weiss; Gunnar Dittmar; Karsten Hiller; Ralf Zimmermann

Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols.


Journal of Biological Chemistry | 2015

Protein kinase Ymr291w/Tda1 is essential for glucose signaling in saccharomyces cerevisiae on the level of hexokinase isoenzyme ScHxk2 phosphorylation*.

Sonja Kaps; Karina Kettner; Rebekka Migotti; Tamara Kanashova; Udo Krause; Gerhard Rödel; Gunnar Dittmar; Thomas M. Kriegel

Background: Monomer-dimer equilibrium, substrate affinity, and subcellular localization of yeast hexokinase ScHxk2 depend on the state of phosphorylation of serine 15. Results: Serine/threonine protein kinase Ymr291w/Tda1 is essentially required for ScHxk2-S15 phosphorylation. Conclusion: Ymr291w/Tda1 is the ScHxk2-S15 kinase or an upstream regulatory enzyme. Significance: The analysis of Ymr291w/Tda1 function(s) is indispensable for understanding glucose signaling in yeast. The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification, whereas protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1, and Ykl126w/Ypk1, which are co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinase PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared with a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in S. cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of S. cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains.


FEBS Open Bio | 2018

Isolation of native plasma membrane H+‐ATPase (Pma1p) in both the active and basal activation states

Jesper Torbøl Pedersen; Tamara Kanashova; Gunnar Dittmar; Michael G. Palmgren

The yeast plasma membrane H+‐ATPase Pma1p is a P‐type ATPase that energizes the yeast plasma membrane. Pma1p exists in two activation states: an autoinhibited basal state and an activated state. Here we show that functional and stable Pma1p can be purified in native form and reconstituted in artificial liposomes without altering its activation state. Acetylated tubulin has previously been reported to maintain Pma1p in the basal state but, as this protein was absent from the purified preparations, it cannot be an essential component of the autoinhibitory mechanism. Purification of and reconstitution of native Pma1p in both activation states opens up for a direct comparison of the transport properties of these states, which allowed us to confirm that the basal state has a low coupling ratio between ATP hydrolysis and protons pumped, whereas the activated state has a high coupling ratio. The ability to prepare native Pma1p in both activation states will facilitate further structural and biochemical studies examining the mechanism by which plasma membrane H+‐ATPases are autoinhibited.


PLOS ONE | 2017

Purification and characterisation of the yeast plasma membrane ATP binding cassette transporter Pdr11p

Katrine Rude Laub; Magdalena Marek; Lyubomir Dimitrov Stanchev; Sara Abad Herrera; Tamara Kanashova; Adèle Bourmaud; Gunnar Dittmar; Thomas Günther Pomorski

The ATP binding cassette (ABC) transporters Pdr11p and its paralog Aus1p are expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and are required for sterol uptake. However, the precise mechanism by which these ABC transporters facilitate sterol movement is unknown. In this study, an overexpression and purification procedure was developed with the aim to characterise the Pdr11p transporter. Engineering of Pdr11p variants fused at the C terminus with green fluorescent protein (Pdr11p-GFP) and containing a FLAG tag at the N terminus facilitated expression analysis and one-step purification, respectively. The detergent-solubilised and purified protein displayed a stable ATPase activity with a broad pH optimum near 7.4. Mutagenesis of the conserved lysine to methionine (K788M) in the Walker A motif abolished ATP hydrolysis. Remarkably, and in contrast to Aus1p, ATPase activity of Pdr11p was insensitive to orthovanadate and not specifically stimulated by phosphatidylserine upon reconstitution into liposomes. Our results highlight distinct differences between Pdr11p and Aus1p and create an experimental basis for further biochemical studies of both ABC transporters to elucidate their function.


Analytical and Bioanalytical Chemistry | 2015

Differential proteomic analysis of mouse macrophages exposed to adsorbate-loaded heavy fuel oil derived combustion particles using an automated sample-preparation workflow

Tamara Kanashova; Oliver Popp; Jürgen Orasche; Erwin Karg; Horst Harndorf; Benjamin Stengel; Martin Sklorz; Thorsten Streibel; Ralf Zimmermann; Gunnar Dittmar


Journal of Molecular and Clinical Medicine | 2018

Emissions from a modern log wood masonry heater and wood pellet boiler: Composition and biological impact on air-liquid interface exposed human lung cancer cells

Tamara Kanashova; Olli Sippula; Sebastian Oeder; Ralf Zimmermann

Collaboration


Dive into the Tamara Kanashova's collaboration.

Top Co-Authors

Avatar

Gunnar Dittmar

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanns-Rudolf Paur

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Dilger

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Karsten Hiller

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar

Olli Sippula

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

C. Schlager

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge