Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamara Kuffner is active.

Publication


Featured researches published by Tamara Kuffner.


Nature Medicine | 2007

Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1.

Heiko Johnen; Shu Lin; Tamara Kuffner; David A. Brown; Vicky Wang-Wei Tsai; Asne R. Bauskin; Liyun Wu; Greg J. Pankhurst; Lele Jiang; Simon Junankar; Mark Hunter; W. Douglas Fairlie; Nicola J. Lee; Ronaldo F. Enriquez; Paul A. Baldock; Eva Corey; Fred S. Apple; MaryAnn M. Murakami; En Ju Lin; Chuansong Wang; Matthew J. During; Amanda Sainsbury; Herbert Herzog; Samuel N. Breit

Anorexia and weight loss are part of the wasting syndrome of late-stage cancer, are a major cause of morbidity and mortality in cancer, and are thought to be cytokine mediated. Macrophage inhibitory cytokine-1 (MIC-1) is produced by many cancers. Examination of sera from individuals with advanced prostate cancer showed a direct relationship between MIC-1 abundance and cancer-associated weight loss. In mice with xenografted prostate tumors, elevated MIC-1 levels were also associated with marked weight, fat and lean tissue loss that was mediated by decreased food intake and was reversed by administration of antibody to MIC-1. Additionally, normal mice given systemic MIC-1 and transgenic mice overexpressing MIC-1 showed hypophagia and reduced body weight. MIC-1 mediates its effects by central mechanisms that implicate the hypothalamic transforming growth factor-β receptor II, extracellular signal–regulated kinases 1 and 2, signal transducer and activator of transcription-3, neuropeptide Y and pro-opiomelanocortin. Thus, MIC-1 is a newly defined central regulator of appetite and a potential target for the treatment of both cancer anorexia and weight loss, as well as of obesity.


Cancer Research | 2006

Role of Macrophage Inhibitory Cytokine-1 in Tumorigenesis and Diagnosis of Cancer

Asne R. Bauskin; David A. Brown; Tamara Kuffner; Heiko Johnen; X. Wei Luo; Mark Hunter; Samuel N. Breit

Macrophage inhibitory cytokine-1 (MIC-1), a transforming growth factor-beta superfamily cytokine, is involved in tumor pathogenesis, and its measurement can be used as a clinical tool for the diagnosis and management of a wide range of cancers. Although generally considered to be part of the cells antitumorigenic repertoire, MIC-1 secretion, processing, and latent storage suggest a complex, dynamic variability in MIC-1 bioavailability in the tumor microenvironment, potentially modulating tumor progression and invasiveness.


Growth Factors Journal | 2011

The TGF-β superfamily cytokine, MIC-1/GDF15: A pleotrophic cytokine with roles in inflammation, cancer and metabolism

Samuel N. Breit; Heiko Johnen; Andrew D. Cook; Vicky Wang-Wei Tsai; Mohammad G. Mohammad; Tamara Kuffner; Hong Ping Zhang; Christopher P. Marquis; Lele Jiang; Glen P. Lockwood; Michelle Lee-Ng; Yasmin Husaini; Liyun Wu; John A. Hamilton; David A. Brown

Macrophage inhibitory cytokine-1 (MIC-1/GDF15) is associated with cardiovascular disease, inflammation, body weight regulation and cancer. Its serum levels facilitate the diagnosis and prognosis of cancer and vascular disease. Furthermore, its serum levels are a powerful predictor of all-cause mortality, suggesting a fundamental role in biological processes associated with ageing. In cancer, the data available suggest that MIC-1/GDF15 is antitumorigenic, but this may not always be the case as disease progresses. Cancer promoting effects of MIC-1/GDF15 may be due, in part, to effects on antitumour immunity. This is suggested by the anti-inflammatory and immunosuppressive properties of MIC-1/GDF15 in animal models of atherosclerosis and rheumatoid arthritis. Furthermore, in late-stage cancer, large amounts of MIC-1/GDF15 in the circulation suppress appetite and mediate cancer anorexia/cachexia, which can be reversed by monoclonal antibodies in animals. Available data suggest MIC-1/GDF15 may be an important molecule mediating the interplay between cancer, obesity and chronic inflammation.


Cancer Research | 2005

The Propeptide Mediates Formation of Stromal Stores of PROMIC-1: Role in Determining Prostate Cancer Outcome

Asne R. Bauskin; David A. Brown; Simon Junankar; K. Rasiah; Sarah A. Eggleton; Mark Hunter; Tao Liu; Dave Smith; Tamara Kuffner; Greg J. Pankhurst; Heiko Johnen; Pamela J. Russell; Wade Barret; John J. Grygiel; James G. Kench; Susan M. Henshall; Robert L. Sutherland; Samuel N. Breit

The extracellular matrix (ECM) is a reservoir of cellular binding proteins and growth factors that are critical for normal cell behavior, and aberrations in the ECM invariably accompany malignancies such as prostate cancer. Carcinomas commonly overexpress macrophage inhibitory cytokine 1 (MIC-1), a proapoptotic and antitumorigenic transforming growth factor-beta superfamily cytokine. Here we show that MIC-1 is often secreted in an unprocessed propeptide containing form. It is variably processed intracellularly, with unprocessed forms being secreted from several tumor lines, including prostate carcinoma lines, PC-3 and LNCaP. Once secreted, only unprocessed proMIC-1 binds ECM, demonstrating for the first time the occurrence of extracellular stores of MIC-1. The propeptide mediates this association via its COOH-terminal 89 amino acids. Xenograft models bearing tumors secreting various engineered forms of MIC-1 show that the propeptide regulates the balance between ECM stores and circulating serum levels of mature MIC-1 in vivo. The absence of propeptide results in approximately 20-fold increase in serum MIC-1 levels. The significance of stromal MIC-1 stores was evaluated in prostate cancer tissue cores, which show major variation in stromal levels of MIC-1. Stromal MIC-1 levels are linked to prostate cancer outcome following radical prostatectomy, with decreasing stromal levels providing an important independent predictor of disease relapse. In low-grade localized prostate cancer (Gleason sum score < or = 6), the level of MIC-1 stromal stores was the best predictor of future relapse when compared with all other clinicopathologic variables. The secretion and ECM association of unprocessed proMIC-1 is likely to play a central role in modulating local bioavailability of MIC-1 which can affect patient outcome in prostate cancer and other epithelial tumors.


Journal of Cell Science | 2012

Intracellular chloride channel protein CLIC1 regulates macrophage function through modulation of phagosomal acidification.

Lele Jiang; Kanin Salao; Hui Li; Joanna M. Rybicka; Robin M. Yates; Xu Wei Luo; Xin Xin Shi; Tamara Kuffner; Vicky Wang-Wei Tsai; Yasmin Husaini; Liyun Wu; David A. Brown; Thomas Grewal; Louise J. Brown; Paul M. G. Curmi; Samuel N. Breit

Summary Intracellular chloride channel protein 1 (CLIC1) is a 241 amino acid protein of the glutathione S transferase fold family with redox- and pH-dependent membrane association and chloride ion channel activity. Whilst CLIC proteins are evolutionarily conserved in Metazoa, indicating an important role, little is known about their biology. CLIC1 was first cloned on the basis of increased expression in activated macrophages. We therefore examined its subcellular localisation in murine peritoneal macrophages by immunofluorescence confocal microscopy. In resting cells, CLIC1 is observed in punctate cytoplasmic structures that do not colocalise with markers for endosomes or secretory vesicles. However, when these macrophages phagocytose serum-opsonised zymosan, CLIC1 translocates onto the phagosomal membrane. Macrophages from CLIC1−/− mice display a defect in phagosome acidification as determined by imaging live cells phagocytosing zymosan tagged with the pH-sensitive fluorophore Oregon Green. This altered phagosomal acidification was not accompanied by a detectable impairment in phagosomal-lysosomal fusion. However, consistent with a defect in acidification, CLIC1−/− macrophages also displayed impaired phagosomal proteolytic capacity and reduced reactive oxygen species production. Further, CLIC1−/− mice were protected from development of serum transfer induced K/BxN arthritis. These data all point to an important role for CLIC1 in regulating macrophage function through its ion channel activity and suggest it is a suitable target for the development of anti-inflammatory drugs.


Nephrology Dialysis Transplantation | 2012

Macrophage inhibitory cytokine-1 (MIC-1/GDF15) and mortality in end-stage renal disease

Samuel N. Breit; Juan Jesus Carrero; Vicky Wang-Wei Tsai; Nasreen Yagoutifam; Wei Luo; Tamara Kuffner; Asne R. Bauskin; Liyun Wu; Lele Jiang; Peter Bárány; Olof Heimbürger; Mary-Ann Murikami; Fred S. Apple; Christopher P. Marquis; Laurence Macia; Shu Lin; Amanda Sainsbury; Herbert Herzog; Matthew Law; Peter Stenvinkel; David A. Brown

BACKGROUND Elevated macrophage inhibitory cytokine-1 (MIC-1/GDF15) levels in serum mediate anorexia and weight loss in some cancer patients and similarly elevated levels occur in chronic kidney disease (CKD). Serum MIC-1/GDF15 is also elevated in chronic inflammatory diseases and predicts atherosclerotic events independently of traditional risk factors. The relationship between chronic inflammation, decreasing body mass index (BMI) and increased mortality in CKD is not well understood and is being actively investigated. MIC-1/GDF15 may link these features of CKD. METHODS Cohorts of incident dialysis patients from Sweden (n = 98) and prevalent hemodialysis patients from the USA (n = 381) had serum MIC-1/GDF15, C-reactive protein (CRP) levels and BMI measured at study entry. Additional surrogate markers of nutritional adequacy, body composition and inflammation were assessed in Swedish patients. Patients were followed for all-cause mortality. RESULTS In the Swedish cohort, serum MIC-1/GDF15 was associated with decreasing BMI, measures of nutrition and markers of oxidative stress and inflammation. Additionally, high serum MIC-1/GDF15 levels identified patients with evidence of protein-energy wasting who died in the first 3 years of dialysis. The ability of serum MIC-1/GDF15 to predict mortality in the first 3 years of dialysis was confirmed in the USA cohort. In both cohorts, serum MIC-1/GDF15 level was an independent marker of mortality when adjusted for age, CRP, BMI, history of diabetes mellitus and/or cardiovascular disease and glomerular filtration rate or length of time on dialysis at study entry. CONCLUSIONS MIC-1/GDF15 is a novel independent serum marker of mortality in CKD capable of significantly improving the mortality prediction of other established markers. MIC-1/GDF15 may mediate protein-energy wasting in CKD and represent a novel therapeutic target for this fatal complication.


PLOS ONE | 2012

Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets.

Laurence Macia; Vicky Wang-Wei Tsai; Amy D. Nguyen; Heiko Johnen; Tamara Kuffner; Yan-Chuan Shi; Shu Lin; Herbert Herzog; David A. Brown; Samuel N. Breit; Amanda Sainsbury

Food intake and body weight are controlled by a variety of central and peripheral factors, but the exact mechanisms behind these processes are still not fully understood. Here we show that that macrophage inhibitory cytokine-1 (MIC-1/GDF15), known to have anorexigenic effects particularly in cancer, provides protection against the development of obesity. Both under a normal chow diet and an obesogenic diet, the transgenic overexpression of MIC-1/GDF15 in mice leads to decreased body weight and fat mass. This lean phenotype was associated with decreased spontaneous but not fasting-induced food intake, on a background of unaltered energy expenditure and reduced physical activity. Importantly, the overexpression of MIC-1/GDF15 improved glucose tolerance, both under normal and high fat-fed conditions. Altogether, this work shows that the molecule MIC-1/GDF15 might be beneficial for the treatment of obesity as well as perturbations in glucose homeostasis.


PLOS ONE | 2013

TGF-b Superfamily Cytokine MIC-1/GDF15 Is a Physiological Appetite and Body Weight Regulator

Vicky Wang-Wei Tsai; Laurence Macia; Heiko Johnen; Tamara Kuffner; Rakesh Manadhar; Sebastian B. Jørgensen; Ka Ki Michelle Lee-Ng; Hong Ping Zhang; Liyun Wu; Christopher P. Marquis; Lele Jiang; Yasmin Husaini; Shu Lin; Herbert Herzog; David A. Brown; Amanda Sainsbury; Samuel N. Breit

The TGF-b superfamily cytokine MIC-1/GDF15 circulates in all humans and when overproduced in cancer leads to anorexia/cachexia, by direct action on brain feeding centres. In these studies we have examined the role of physiologically relevant levels of MIC-1/GDF15 in the regulation of appetite, body weight and basal metabolic rate. MIC-1/GDF15 gene knockout mice (MIC-1−/−) weighed more and had increased adiposity, which was associated with increased spontaneous food intake. Female MIC-1−/− mice exhibited some additional alterations in reduced basal energy expenditure and physical activity, possibly owing to the associated decrease in total lean mass. Further, infusion of human recombinant MIC-1/GDF15 sufficient to raise serum levels in MIC-1−/− mice to within the normal human range reduced body weight and food intake. Taken together, our findings suggest that MIC-1/GDF15 is involved in the physiological regulation of appetite and energy storage.


Genesis | 2010

Generation and characterization of mice with null mutation of the chloride intracellular channel 1 gene.

Min Ru Qiu; Lele Jiang; Klaus I. Matthaei; Simone M. Schoenwaelder; Tamara Kuffner; Pierre Mangin; Joanne E. Joseph; Joyce Low; David E. Connor; Stella M. Valenzuela; Paul M. G. Curmi; Louise J. Brown; Martyn P. Mahaut-Smith; Shaun P. Jackson; Samuel N. Breit

CLIC1 belongs to a family of highly conserved and widely expressed intracellular chloride ion channel proteins existing in both soluble and membrane integrated forms. To study the physiological and biological role of CLIC1 in vivo, we undertook conditional gene targeting to engineer Clic1 gene knock‐out mice. This represents creation of the first gene knock‐out of a vertebrate CLIC protein family member. We first generated a Clic1 Knock‐in (Clic1FN) allele, followed by Clic1 knock‐out (Clic1−/−) mice by crossing Clic1FN allele with TNAP‐cre mice, resulting in germline gene deletion through Cre‐mediated recombination. Mice heterozygous or homozygous for these alleles are viable and fertile and appear normal. However, Clic1−/− mice show a mild platelet dysfunction characterized by prolonged bleeding times and decreased platelet activation in response to adenosine diphosphate stimulation linked to P2Y12 receptor signaling. genesis 48:127–136, 2010.


PLOS ONE | 2012

Macrophage Inhibitory Cytokine-1 (MIC-1/GDF15) Slows Cancer Development but Increases Metastases in TRAMP Prostate Cancer Prone Mice

Yasmin Husaini; Min Ru Qiu; Glen P. Lockwood; Xu Wei Luo; Ping Shang; Tamara Kuffner; Vicky Wang-Wei Tsai; Lele Jiang; Pamela J. Russell; David A. Brown; Samuel N. Breit

Macrophage inhibitory cytokine-1 (MIC-1/GDF15), a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa) and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1fms) to produce syngeneic TRAMPfmsmic-1 mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1fms and syngeneic C57BL/6 mice. Whilst TRAMPfmsmic-1 survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU) tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1fms mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.

Collaboration


Dive into the Tamara Kuffner's collaboration.

Top Co-Authors

Avatar

Samuel N. Breit

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

David A. Brown

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Lele Jiang

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Heiko Johnen

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasmin Husaini

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asne R. Bauskin

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Herbert Herzog

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Liyun Wu

St. Vincent's Health System

View shared research outputs
Researchain Logo
Decentralizing Knowledge