Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamara N. Jeppson is active.

Publication


Featured researches published by Tamara N. Jeppson.


Science | 2013

Stress State in the Largest Displacement Area of the 2011 Tohoku-Oki Earthquake

Weiren Lin; Marianne Conin; John Moore; Frederick M. Chester; Yasuyuki Nakamura; Jim Mori; Louise Anderson; Emily E. Brodsky; Nobuhisa Eguchi; B. Cook; Tamara N. Jeppson; Monica Wolfson-Schwehr; Yoshinori Sanada; Shiro Saito; Yukari Kido; Takehiro Hirose; Jan H. Behrmann; Matt J. Ikari; Kohtaro Ujiie; Christie D. Rowe; James D. Kirkpatrick; Santanu Bose; Christine Regalla; Francesca Remitti; Virginia G. Toy; Patrick M. Fulton; Toshiaki Mishima; Tao Yang; Tianhaozhe Sun; Tsuyoshi Ishikawa

Stressed Out Large seismic events such as the 2011 magnitude 9.0 Tohoku-Oki earthquake can have profound effects not just on the severity of ground motion and tsunami generation, but also on the overall state of the crust in the surrounding regions. Lin et al. (p. 687) analyzed the stress 1 year after the Tohoku-Oki earthquake and compared it with the estimated stress state before the earthquake. In situ resistivity images were analyzed from three boreholes drilled into the crust across the plate interface where the earthquake occurred. Stress values indicate a nearly complete drop in stress following the earthquake such that the type of faulting above the plate boundary has changed substantially. These findings are consistent with observations that the sea floor moved nearly 50 meters during the earthquake. Borehole stress measurements indicate a nearly total stress drop in the region of largest slip. The 2011 moment magnitude 9.0 Tohoku-Oki earthquake produced a maximum coseismic slip of more than 50 meters near the Japan trench, which could result in a completely reduced stress state in the region. We tested this hypothesis by determining the in situ stress state of the frontal prism from boreholes drilled by the Integrated Ocean Drilling Program approximately 1 year after the earthquake and by inferring the pre-earthquake stress state. On the basis of the horizontal stress orientations and magnitudes estimated from borehole breakouts and the increase in coseismic displacement during propagation of the rupture to the trench axis, in situ horizontal stress decreased during the earthquake. The stress change suggests an active slip of the frontal plate interface, which is consistent with coseismic fault weakening and a nearly total stress drop.


Nature | 2017

Extreme hydrothermal conditions at an active plate-bounding fault

Rupert Sutherland; John Townend; Virginia G. Toy; Phaedra Upton; Jamie Coussens; Michael F. Allen; Laura May Baratin; Nicolas Barth; Leeza Becroft; C. M. Boese; Austin Boles; Carolyn Boulton; Neil G. R. Broderick; Lucie Janku-Capova; Brett M. Carpenter; Bernard Célérier; Calum J. Chamberlain; Alan Cooper; Ashley Coutts; Simon J. Cox; Lisa Craw; Mai-Linh Doan; Jennifer Eccles; D. R. Faulkner; Jason Grieve; Julia Grochowski; Anton Gulley; Arthur Hartog; Jamie Howarth; Katrina Jacobs

Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300–450 degrees Celsius, usually found at depths greater than 10–15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional–mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.


Earth, Planets and Space | 2014

Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low V p, high V p/ V s in the transparent frontal prism

Yasuyuki Nakamura; Shuichi Kodaira; Becky Cook; Tamara N. Jeppson; Takafumi Kasaya; Yojiro Yamamoto; Yoshitaka Hashimoto; Mika Yamaguchi; Koichiro Obana; Gou Fujie

Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average V p/V s in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.


New Zealand Journal of Geology and Geophysics | 2017

Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

Virginia G. Toy; Rupert Sutherland; John Townend; Michael John Allen; Leeza Becroft; Austin Boles; Carolyn Boulton; Brett M. Carpenter; Alan Cooper; Simon C. Cox; Christopher Daube; D. R. Faulkner; Angela Halfpenny; Naoki Kato; Stephen Keys; Martina Kirilova; Yusuke Kometani; Timothy A. Little; Elisabetta Mariani; Benjamin Melosh; Catriona Menzies; Luiz F. G. Morales; Chance Morgan; Hiroshi Mori; André R. Niemeijer; Richard J. Norris; David J. Prior; Katrina Sauer; Anja M. Schleicher; Norio Shigematsu

ABSTRACT During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.


Journal of Geophysical Research | 2015

San Andreas fault zone velocity structure at SAFOD at core, log, and seismic scales

Tamara N. Jeppson; Harold Tobin

The San Andreas Fault (SAF), like other mature brittle faults, exhibits a zone of low seismic velocity hypothesized to result from fluid pressure effects and/or development of a damage zone. To address the relative contributions of these mechanisms in developing low-velocity zones, we measured P and S wave velocities ultrasonically at elevated confining and pore pressures on core samples from the San Andreas Fault Observatory at Depth (SAFOD). We compared those data to wireline and seismic-scale velocities to examine the scale dependence of acoustic properties of the fault core and damage zone. Average laboratory P and S wave velocities of the fault gouge at estimated in situ conditions are 3.1 and 1.5 km/s, respectively, consistent with the sonic log from the same intervals. These data show that fault core has intrinsically low velocity, even if no anomalous pore pressure is assumed, due to alteration and mechanical damage. In contrast, laboratory average P and S wave velocities for the damage zone are 4.7 and 2.5 km/s, up to 41% greater than the sonic log in the damage zone. This scale dependence indicates that stress conditions or macroscale features dominate the damage zones acoustic properties, although velocity dispersion could play a role. Because no pressure anomaly was detected while drilling the SAFOD borehole, we infer that damage at a scale larger than core samples controls the elastic properties of the broader damage zone. This result bolsters other independent lines of evidence that the SAF does not contain major pore fluid overpressure at SAFOD.


Journal of Geophysical Research | 2014

Implications of transient deformation in the northern Basin and Range, western United States

Ashutosh Chamoli; Anthony R. Lowry; Tamara N. Jeppson

Transient deformation events observed in Global Positioning System (GPS) data from the Basin and Range extensional province may illuminate qualitatively similar transient events observed in subduction zones and other tectonic environments. We model GPS time series at 22 sites using a combination of hyperbolic tangent function analysis and elastic load deformation estimated from climatological data. We identify two transient events, ~2000.4 and ~2004.4, with roughly similar timing and displacement to those described previously by other researchers. The first few years of GPS observations, adopted as a reference state in earlier studies, are found to be anomalous. Our results differ from previous studies in two respects. First, a significant component of northward transient motion occurs during both events, despite a reversal of sign in east component motion. Second, sites move coherently in the eastern as well as the western Basin and Range. Surface mass loading, the largest source of transient stress forcing in the region, exhibits no evidence of a simple relationship to the deformation transients. Prior studies inferred slip on a single megadetachment at the Moho, but that hypothesis assumes negligible ductile deformation of the lower crust and a dry olivine rheology for the uppermost mantle. Recent measurements of crustal quartz abundance and effective elastic thickness suggest both assumptions are unlikely. Basin and Range transients can be reconciled with the frictional slip mechanism widely accepted for subduction zone transients provided that slip is occurring on discontiguous detachment surfaces at midcrustal depths.


Science | 2017

Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra

Andre Hüpers; Marta E. Torres; Satoko Owari; Lisa C. McNeill; Brandon Dugan; Timothy J. Henstock; Kitty L. Milliken; Katerina Petronotis; Jan Backman; Sylvain Bourlange; Farid Chemale; Wenhuang Chen; Tobias A. Colson; Marina C.G. Frederik; Gilles Guerin; Mari Hamahashi; Brian M. House; Tamara N. Jeppson; Sarah Kachovich; Abby R. Kenigsberg; Mebae Kuranaga; Steffen Kutterolf; Freya L. Mitchison; Hideki Mukoyoshi; Nisha Nair; Kevin T. Pickering; Hugo Pouderoux; Yehua Shan; Insun Song; Paola Vannucchi

Sediments tell a tsunami story Trying to understand where major earthquakes and tsunamis might occur requires analysis of the sediments pouring into a subduction zone. Thick sediments were expected to limit earthquake and tsunami size in the Sumatran megathrust event in 2004, but the magnitude 9.2 earthquake defied expectations. Hüpers et al. analyzed sediments recovered from the Sumatran megathrust. They found evidence of sediment dehydration, which increased fault strength and allowed for the much larger earthquake to occur. Thus, models of other subduction zones, such as the Gulf of Alaska, may underestimate the maximum earthquake magnitude and tsunami risk. Science, this issue p. 841 Sediments drilled near the rupture of the 2004 great Sumatran earthquake provide insight into the unexpectedly large tsunami. Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records.


Geochemistry Geophysics Geosystems | 2017

Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

John Townend; Rupert Sutherland; Virginia G. Toy; Mai-Linh Doan; Bernard Célérier; Cécile Massiot; Jamie Coussens; Tamara N. Jeppson; Lucie Janku-Capova; Léa Remaud; Phaedra Upton; Douglas R. Schmitt; Philippe A. Pezard; John W. Williams; Michael John Allen; Laura May Baratin; Nicolas Barth; Leeza Becroft; C. M. Boese; Carolyn Boulton; Neil G. R. Broderick; Brett M. Carpenter; Calum J. Chamberlain; Alan Cooper; Ashley Coutts; Simon C. Cox; Lisa Craw; Jennifer Eccles; D. R. Faulkner; Jason Grieve

Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (∼10−9 to 10−7 m/s, corresponding to permeability of ∼10−16 to 10−14 m2) extending several hundred meters from the faults principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.


Geosphere | 2018

Laboratory measurements quantifying elastic properties of accretionary wedge sediments: Implications for slip to the trench during the 2011 Mw 9.0 Tohoku-Oki earthquake

Tamara N. Jeppson; Harold Tobin; Yoshitaka Hashimoto

1411 Jeppson et al. | Japan Trench elastic properties GEOSPHERE | Volume 14 | Number 4 Laboratory measurements quantifying elastic properties of accretionary wedge sediments: Implications for slip to the trench during the 2011 Mw 9.0 Tohoku-Oki earthquake Tamara N. Jeppson1,*, Harold J. Tobin1, and Yoshitaka Hashimoto2 1Geoscience Department, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA 2Department of Applied Science, Kochi University, Kochi 780-8520, Japan GEOSPHERE


Pure and Applied Geophysics | 2018

Fully Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone

Gabriel C. Lotto; Tamara N. Jeppson; Eric M. Dunham

AbstractSubduction zone earthquakes can produce significant seafloor deformation and devastating tsunamis. Real subduction zones display remarkable diversity in fault geometry and structure, and accordingly exhibit a variety of styles of earthquake rupture and tsunamigenic behavior. We perform fully coupled earthquake and tsunami simulations for three subduction zones: the Japan Trench, the Nankai Trough, and the Cascadia Subduction Zone. We use data from seismic surveys, drilling expeditions, and laboratory experiments to construct detailed 2D models of the subduction zones with realistic geometry, structure, friction, and prestress. Greater prestress and rate-and-state friction parameters that are more velocity-weakening generally lead to enhanced slip, seafloor deformation, and tsunami amplitude. The Japan Trench’s small sedimentary prism enhances shallow slip, but has only a small effect on tsunami height. In Nankai where there is a prominent splay fault, frictional parameters and off-fault material properties both influence the choice of rupture pathway in complex ways. The splay generates tsunami waves more efficiently than the décollement. Rupture in Cascadia is buried beneath the seafloor, but causes a tsunami that is highly complex due to the rough seafloor bathymetry. Neglecting compliant sediment layers leads to substantially different rupture behavior and tsunami height. We demonstrate that horizontal seafloor displacement is a major contributor to tsunami generation in all subduction zones studied. We document how the nonhydrostatic response of the ocean at short wavelengths smooths the initial tsunami source relative to commonly used approach for setting tsunami initial conditions. Finally, we determine self-consistent tsunami initial conditions by isolating tsunami waves from seismic and acoustic waves at a final simulation time and backpropagating them to their initial state using an adjoint method. We find no evidence to support claims that horizontal momentum transfer from the solid Earth to the ocean is important in tsunami generation.

Collaboration


Dive into the Tamara N. Jeppson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abby R. Kenigsberg

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian M. House

University of California

View shared research outputs
Top Co-Authors

Avatar

Harold Tobin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kitty L. Milliken

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

John Townend

Victoria University of Wellington

View shared research outputs
Researchain Logo
Decentralizing Knowledge