Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamara Radetić is active.

Publication


Featured researches published by Tamara Radetić.


Applied Physics Letters | 2004

Thermal conductivity of nanoporous bismuth thin films

David Song; Wenjiang Shen; Bruce Dunn; C. D. Moore; M. S. Goorsky; Tamara Radetić; R. Gronsky; Gang Chen

The thermal conductivity of nanoporous Bi thin films has been experimentally determined. Samples are fabricated by a liquid phase deposition, and their thermal conductivities are measured by a differential 3ω method. Nanoporous Bi thin films exhibit an order-of-magnitude reduction in thermal conductivity compared to that of solid films, most likely the result of a reduction in phonon mean free path. When porous Bi films are exposed to a hydrogen plasma, thermal conductivity measurements reveal no variation with extent of porosity, while electrical conductivity is much more sensitive to porosity, suggesting the possibility of independent control of these two intrinsic properties.


Philosophical Magazine | 2004

Observations of interface premelting at grain-boundary precipitates of Pb in Al

U. Dahmen; S. Hagège; F. Faudot; Tamara Radetić; E. Johnson

This work reports direct observations showing the effect of size and interface structure on premelting behaviour of nanoscale inclusions. Using in-situ transmission electron microscopy it was possible to observe premelting of individual Pb inclusions in Al, each bounded by two distinctly different topotaxial interfaces. Such particles were generated by precipitating single-crystal Pb inclusions a few tens of nanometres in size at grain boundaries in Al. At equilibrium these particles adopt compound shapes, made from two segments whose shape and interface structure is characteristic of their misorientation with the matrix crystal. Only one of these interfaces premelts. In close agreement with a simple model, the width of the liquid layer depends reversibly on undercooling and interface curvature, and hence on particle size. The observed behaviour confirms previous reports on interface-dependent melting. By observing the selective melting of different interfaces for the first time on individual particles, it was possible to rule out experimental uncertainties and to show unambiguously that inclusion melting depends strongly on interface structure.


Ultrasonics Sonochemistry | 2015

Sonophotocatalytic degradation of dye C.I. Acid Orange 7 by TiO2 and Ag nanoparticles immobilized on corona pretreated polypropylene non-woven fabric.

Darka Marković; Zoran Šaponjić; Marija Radoičić; Tamara Radetić; Vesna Vodnik; Branislav Potkonjak; Maja Radetić

This study discusses the possibility of using corona pre-treated polypropylene (PP) non-woven fabric as a support for immobilization of colloidal TiO2 and Ag nanoparticles in order to remove dye C.I. Acid Orange 7 from aqueous solution. Dye removal efficiency by sonocatalysis, photocatalysis and sonophotocatalysis was evaluated on corona pre-treated fabric loaded with TiO2 nanoparticles, corona pre-treated fabric double loaded with TiO2 nanoparticles and corona pre-treated fabrics loaded with TiO2 nanoparticles before and after deposition of Ag nanoparticles. In addition, the stability of PP non-woven fabric during these processes was investigated. The substrates were characterized by SEM, EDX and AAS analyses. The change of the dye concentration was evaluated by UV-VIS spectrophotometry. Unlike sonocatalysis and photocatalysis, complete dye removal from both solution and non-woven fabric was obtained already after 240-270 min of sonophotocatalysis. Corona pre-treated PP non-woven fabric loaded with Ag nanoparticles prior to deposition of TiO2 nanoparticles provided excellent degradation efficiency and superior reusability. Sonophotocatalytic degradation of dye in the presence of all investigated samples was the most prominent in acidic conditions. Although this nanocomposite system ensured fast discoloration of dye solution, TOC values of water measured after sonophotocatalysis were not satisfactory because of PP degradation. Therefore, it is suggested to include TOC evaluation in each case study where different supports for TiO2 nanoparticles are used since these nanoparticles may guarantee the dye removal from solution but the stability of support could be problematic causing even more serious environmental impact.


Nano Letters | 2010

Superglide at an Internal Incommensurate Boundary

Frédéric Lançon; Jia Ye; Damien Caliste; Tamara Radetić; Andrew M. Minor; U. Dahmen

The intriguing possibility of frictionless gliding of one solid surface on another has been predicted for certain incommensurate interfaces in crystals, based on Aubrys solution to the Frenkel-Kontorova model of a harmonic chain in a periodic potential field. Here we test this prediction for grain boundaries by comparing atomistic simulations with direct experimental observations on the structure and load-deformation behavior of gold nanopillars containing a root-two incommensurate grain boundary. The simulations show supergliding at this boundary limited by finite-size effects which cause edges to act as defects of the incommensurate structure. Structural relaxation at the edges generates stacking faults, dislocations, and asymmetric surface steps. These features as well as the related load-displacement behavior are replicated by experimental observations on the compression of nanopillars using a quantitative nanoindentation device inside a transmission electron microscope. The good agreement between the observed and predicted behavior suggests that incommensurate interfaces could play an important role in the deformation of polycrystalline materials.


Cellulose | 2014

In situ photoreduction of Ag+-ions by TiO2 nanoparticles deposited on cotton and cotton/PET fabrics

Milica Milošević; Marija Radoičić; Zoran Šaponjić; Tim Nunney; Christopher Deeks; Vesna Lazić; Miodrag Mitrić; Tamara Radetić; Maja Radetić

The possibility of in situ photoreduction of Ag+-ions using TiO2 nanoparticles deposited on cotton and cotton/PET fabrics in the presence of amino acid alanine and methyl alcohol has been discussed. The possible interaction between TiO2, alanine and Ag+-ions was evaluated by FTIR analysis. The fabrication of TiO2/Ag nanoparticles on both fabrics was confirmed by SEM, EDX, XRD, XPS and AAS analyses. Cotton and cotton/PET fabrics impregnated with TiO2/Ag nanoparticles provided maximum reduction of Gram-negative bacteria Escherichiacoli and Gram-positive bacteria Staphylococcusaureus. Although excellent antibacterial activity was preserved after ten washing cycles, a significant amount of silver leached out from the fabrics into the washing bath. The perspiration fastness assessment revealed that smaller amounts of silver were also released from the fabrics into artificial sweat at pH 5.50 and 8.00. In addition, deposited TiO2/Ag nanoparticles imparted maximum UV protection to fabrics.


Philosophical Magazine | 2004

One-dimensional random walk of nanosized liquid Pb inclusions on dislocations in Al

E. Johnson; M. T. Levinsen; S. Steenstrup; S.I. Prokofjev; V.M. Zhilin; U. Dahmen; Tamara Radetić

Migration of nanosized liquid Pb inclusions attached to dislocations in Al has been observed during in-situ transmission electron microscopy heating experiments and monitored by real-time video recordings. The movements of the inclusions can be separated into two independent components parallel to and perpendicular to the dislocations respectively. Movements parallel to the dislocation lines display properties of partially confined one-dimensional random walks where smaller inclusions can be seen to move over distances that are many times their own sizes. In contrast, the trajectories perpendicular to the dislocation lines are within narrowly confined spaces. Frame-by-frame analysis of digitized video sequences recorded at different temperatures for the same inclusion attached to a nearly horizontal dislocation illustrates the two types of movement. The step lengths parallel to the dislocation increase rapidly with increasing temperature while the step lengths in the transverse movement only display a weak temperature dependence. A detailed statistical analysis of the inclusion trajectories documents that both patterns of movement are random. The activation enthalpy of the one-dimensional movement parallel to the dislocation was found to be 2.72 ± 0.10 eV at lower temperatures and 1.44 ± 0.07 eV at higher temperatures with a transition temperature around 650–660 K.


Cellulose | 2015

Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics

Vesna Lazić; Marija Radoičić; Zoran Šaponjić; Tamara Radetić; Vesna Vodnik; Svetlana Nikolić; Suzana Dimitrijević; Maja Radetić

Abstract Recently, many efforts have been made to efficiently impregnate different textile materials with metal and metal oxide nanoparticles in order to provide antimicrobial, UV protective or self-cleaning properties. Evidence of their environmental risks is limited at this point. The aim of this study was to explore the influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. Biodegradation behavior of cotton fabrics impregnated with Ag and TiO2 NPs from colloidal solutions of different concentrations was assessed according to standard test method ASTM 5988-03 and soil burial test. Degradation of cotton fabrics was also evaluated by enzymatic hydrolysis with cellulase. The morphology of fibers affected by biodegradation was analyzed by scanning electron microscopy (SEM). In order to get better insight into biodegradation process, dehydrogenase activity of soil has been determined. Ag and particularly TiO2 nanoparticles suppressed the biodegradation of cotton fabrics. The dehydrogenase activity of soil with cotton fabrics impregnated with TiO2 nanoparticles was the weakest. Severe damage of cotton fibers during the biodegradation process was confirmed by SEM.Graphical Abstract


MRS Proceedings | 2002

Structure and Magnetism of Co and CoAg Nanocrystals

Marina Spasova; Tamara Radetić; Nelli S. Sobal; Michael Hilgendorff; Ulf Wiedwald; M. Farle; Michael Giersig; U. Dahmen

Monodisperse, air-stable Co/CoO and CoAg55 nanoparticles with a mean diameter of about 11 nm have been synthesized using methods of colloidal chemistry. High resolution transmission electron microscopy (TEM) and Electron Energy-Loss Spectroscopy (EELS) element-specific TEM images reveal a multiply-twinned fcc Co metallic core covered with a 2-2.5 nm thick CoO shell. The lattice parameters are in agreement with those of bulk Co and CoO. A shift of the hysteresis loop of 0.4 T, induced by field CoOling of the Co/CoO particles, indicates a strong unidirectional exchange anisotropy due to the interaction between the ferromagnetic Co core and the antiferromagnetic CoO shell. CoAg55 composite particles consist of grains of fcc Co and fcc Ag. No evidence for alloy formation was observed. Electron energy-loss and X-ray microanalysis indicate that Co is predominantly found in the surface region of the particles. SQUID magnetometry shows that at room temperature the CoAg55 particles are superparamagnetic while at 90 K a hysteresis loop was detected with a coercive field of 0.07 T and a remanent magnetization of 32 % of the saturation value.


Carbohydrate Polymers | 2017

Biodegradation of cotton and cotton/polyester fabrics impregnated with Ag/TiO2 nanoparticles in soil

Milica Milošević; Ana Krkobabić; Marija Radoičić; Zoran Šaponjić; Tamara Radetić; Maja Radetić

This study discusses the biodegradation behavior of cotton and cotton/PET fabrics impregnated with Ag/TiO2 nanoparticles in soil. Biodegradation behavior was evaluated by standard test method ASTM 5988-03 based on determination of percentage conversions of carbon content to CO2 as well as by soil burial test and enzymatic hydrolysis with cellulase where the extent of biodegradation was estimated by the calculation of fabric weight loss. The morphological and chemical changes of fibers during biodegradation process were analyzed by SEM and FTIR spectroscopy, respectively. The results obtained by all applied methods suggested that Ag/TiO2 nanoparticles hindered the biodegradation of investigated cotton and cotton/PET fabrics. Soil burial test indicated faster biodegradation of the impregnated blend compared to impregnated cotton fabric which is attributed to smaller amount of fabricated Ag nanoparticles on the blend proved by AAS measurement. Similar trend was established by enzymatic hydrolysis of cotton fibers. Severe damage of cotton fibers in both fabrics due to biodegradation process was confirmed by SEM. However, the cotton fiber damage occurred to a lesser extent in the samples that were impregnated with Ag/TiO2 nanoparticles. PET fibers remained intact which was also indicated by FTIR analysis.


Light Metals | 2014

Effect of the Thermo-Mechanical Treatment on IGC Susceptibility of AA 5083 Alloy

Tamara Radetić; Akram Halap; M. Popović; Endre Romhanji

This work reports on the effect of thermo-mechanical treatment on IGC susceptibility of the AA 5083 alloy. Specimens underwent varied amount of cold work and final annealing was conducted at 240°C. Extent of the cold work affected the IGC susceptibility of the alloy significantly. Microstructure characterization showed that depending on the amount of the cold work different deformation substructure was created, which, in turn, influenced morphology of precipitated β-phase (Al3Mg2). Formation of continuous film of the β-phase at the grain boundaries was observed in the specimens that were subjected to lower degree of the cold work and which were IGC susceptible. Better corrosion resistance characterized the specimens that underwent higher degree of the cold work (over 30–40%) due to β-phase precipitation in the form of discrete particles at the grain boundaries and in grain interiors.

Collaboration


Dive into the Tamara Radetić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Popović

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Johnson

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Gronsky

University of California

View shared research outputs
Top Co-Authors

Avatar

C. D. Moore

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge