Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamara S. Galloway is active.

Publication


Featured researches published by Tamara S. Galloway.


JAMA | 2008

Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults.

Iain A. Lang; Tamara S. Galloway; Alan G. Scarlett; William Henley; Michael H. Depledge; Robert B. Wallace; David Melzer

CONTEXT Bisphenol A (BPA) is widely used in epoxy resins lining food and beverage containers. Evidence of effects in animals has generated concern over low-level chronic exposures in humans. OBJECTIVE To examine associations between urinary BPA concentrations and adult health status. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional analysis of BPA concentrations and health status in the general adult population of the United States, using data from the National Health and Nutrition Examination Survey 2003-2004. Participants were 1455 adults aged 18 through 74 years with measured urinary BPA and urine creatinine concentrations. Regression models were adjusted for age, sex, race/ethnicity, education, income, smoking, body mass index, waist circumference, and urinary creatinine concentration. The sample provided 80% power to detect unadjusted odds ratios (ORs) of 1.4 for diagnoses of 5% prevalence per 1-SD change in BPA concentration, or standardized regression coefficients of 0.075 for liver enzyme concentrations, at a significance level of P < .05. MAIN OUTCOME MEASURES Chronic disease diagnoses plus blood markers of liver function, glucose homeostasis, inflammation, and lipid changes. RESULTS Higher urinary BPA concentrations were associated with cardiovascular diagnoses in age-, sex-, and fully adjusted models (OR per 1-SD increase in BPA concentration, 1.39; 95% confidence interval [CI], 1.18-1.63; P = .001 with full adjustment). Higher BPA concentrations were also associated with diabetes (OR per 1-SD increase in BPA concentration, 1.39; 95% confidence interval [CI], 1.21-1.60; P < .001) but not with other studied common diseases. In addition, higher BPA concentrations were associated with clinically abnormal concentrations of the liver enzymes gamma-glutamyltransferase (OR per 1-SD increase in BPA concentration, 1.29; 95% CI, 1.14-1.46; P < .001) and alkaline phosphatase (OR per 1-SD increase in BPA concentration, 1.48; 95% CI, 1.18-1.85; P = .002). CONCLUSION Higher BPA exposure, reflected in higher urinary concentrations of BPA, may be associated with avoidable morbidity in the community-dwelling adult population.


Environment International | 2011

Silver nanoparticles: Behaviour and effects in the aquatic environment

Julia Fabrega; Samuel N. Luoma; Charles R. Tyler; Tamara S. Galloway; Jamie R. Lead

This review summarises and evaluates the present knowledge on the behaviour, the biological effects and the routes of uptake of silver nanoparticles (Ag NPs) to organisms, with considerations on the nanoparticle physicochemistry in the ecotoxicity testing systems used. Different types of Ag NP syntheses, characterisation techniques and predicted current and future concentrations in the environment are also outlined. Rapid progress in this area has been made over the last few years, but there is still a critical lack of understanding of the need for characterisation and synthesis in environmental and ecotoxicological studies. Concentration and form of nanomaterials in the environment are difficult to quantify and methodological progress is needed, although sophisticated exposure models show that predicted environmental concentrations (PECs) for Ag NPs in different environmental compartments are at the range of ng L(-1) to mg kg(-1). The ecotoxicological literature shows that concentrations of Ag NPs below the current and future PECs, as low as just a few ng L(-1), can affect prokaryotes, invertebrates and fish indicating a significant potential, though poorly characterised, risk to the environment. Mechanisms of toxicity are still poorly understood although it seems clear that in some cases nanoscale specific properties may cause biouptake and toxicity over and above that caused by the dissolved Ag ion. This review concludes with a set of recommendations for the advancement of understanding of the role of nanoscale silver in environmental and ecotoxicological research.


Philosophical Transactions of the Royal Society B | 2009

Transport and release of chemicals from plastics to the environment and to wildlife.

Emma L. Teuten; Jovita M. Saquing; Detlef R.U. Knappe; Morton A. Barlaz; Susanne Jonsson; Annika Björn; Steven J. Rowland; Richard C. Thompson; Tamara S. Galloway; Rei Yamashita; Daisuke Ochi; Yutaka Watanuki; Charles J. Moore; Pham Hung Viet; Touch Seang Tana; Maricar Prudente; Ruchaya Boonyatumanond; Mohamad Pauzi Zakaria; Kongsap Akkhavong; Yuko Ogata; Hisashi Hirai; Satoru Iwasa; Kaoruko Mizukawa; Yuki Hagino; Ayako Imamura; Mahua Saha; Hideshige Takada

Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2′-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g–1 to µg g–1. Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub µg l–1 to mg l–1 and were correlated with the level of economic development.


Marine Pollution Bulletin | 2011

Microplastics as contaminants in the marine environment: A review

Matthew Cole; Pennie Lindeque; Claudia Halsband; Tamara S. Galloway

Since the mass production of plastics began in the 1940s, microplastic contamination of the marine environment has been a growing problem. Here, a review of the literature has been conducted with the following objectives: (1) to summarise the properties, nomenclature and sources of microplastics; (2) to discuss the routes by which microplastics enter the marine environment; (3) to evaluate the methods by which microplastics are detected in the marine environment; (4) to assess spatial and temporal trends of microplastic abundance; and (5) to discuss the environmental impact of microplastics. Microplastics are both abundant and widespread within the marine environment, found in their highest concentrations along coastlines and within mid-ocean gyres. Ingestion of microplastics has been demonstrated in a range of marine organisms, a process which may facilitate the transfer of chemical additives or hydrophobic waterborne pollutants to biota. We conclude by highlighting key future research areas for scientists and policymakers.


Environmental Science & Technology | 2011

Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks

Mark A. Browne; Phillip Crump; Stewart J. Niven; Emma L. Teuten; Andrew Tonkin; Tamara S. Galloway; Richard C. Thompson

Plastic debris <1 mm (defined here as microplastic) is accumulating in marine habitats. Ingestion of microplastic provides a potential pathway for the transfer of pollutants, monomers, and plastic-additives to organisms with uncertain consequences for their health. Here, we show that microplastic contaminates the shorelines at 18 sites worldwide representing six continents from the poles to the equator, with more material in densely populated areas, but no clear relationship between the abundance of miocroplastics and the mean size-distribution of natural particulates. An important source of microplastic appears to be through sewage contaminated by fibers from washing clothes. Forensic evaluation of microplastic from sediments showed that the proportions of polyester and acrylic fibers used in clothing resembled those found in habitats that receive sewage-discharges and sewage-effluent itself. Experiments sampling wastewater from domestic washing machines demonstrated that a single garment can produce >1900 fibers per wash. This suggests that a large proportion of microplastic fibers found in the marine environment may be derived from sewage as a consequence of washing of clothes. As the human population grows and people use more synthetic textiles, contamination of habitats and animals by microplastic is likely to increase.


Ecotoxicology | 2003

Immunotoxicity of organophosphorous pesticides

Tamara S. Galloway; Richard D. Handy

This study reviews the toxic effects of organophosphate (OP) pesticides on the immune systems and immune functions of invertebrates, fish, and higher vertebrate wildlife. The fundamental features and mechanisms of OP-induced immunotoxicity are illustrated with reference to parathion, chlorpyrifos, malathion, and diazinon. Immunotoxicity may be direct via inhibition of serine hydrolases or esterases in components of the immune system, through oxidative damage to immune organs, or by modulation of signal transduction pathways controlling immune functions. Indirect effects include modulation by the nervous system, or chronic effects of altered metabolism/nutrition on immune organs. Immunotoxicities are varied and include pathology of immune organs, and decreased humoral and/or cell mediated immunity. Altered non-specific immunity, decreased host resistance, hypersensitivity and autoimmunity are also features of immunotoxicity; although not all of these have been conclusively demonstrated in terms of pollutant exposure and immunotoxic effects in wildlife within individual experiments. Immunotoxicological biomarkers and biological monitoring tools are urgently needed to assess the extent of immunotoxicity in wildlife. Selection of universal biomarkers is hampered by the physiological diversity of immune systems in animals. However, by drawing on evidence from human epidemiology and tiered approaches in mammalian immunotoxicity evaluation, a selection of generic biomarkers of immunotoxicity in animals is suggested. Priorities for future research are also identified.


PLOS ONE | 2010

Association of Urinary Bisphenol A Concentration with Heart Disease: Evidence from NHANES 2003/06

David Melzer; Neil E. Rice; Ceri Lewis; William Henley; Tamara S. Galloway

Background Bisphenol A (BPA) is a high production volume chemical widely used in food and drinks packaging. Associations have previously been reported between urinary BPA concentrations and heart disease, diabetes and liver enzymes in adult participants of the National Health and Nutrition Examination Survey (NHANES) 2003/04. We aimed to estimate associations between urinary BPA concentrations and health measures in NHANES 2005/06 and in data pooled across collection years. Methodology and Findings A cross-sectional analysis of NHANES: subjects were n = 1455 (2003/04) and n = 1493 (2005/06) adults aged 18–74 years, representative of the general adult population of the United States. Regression models were adjusted for age, sex, race/ethnicity, education, income, smoking, BMI, waist circumference, and urinary creatinine concentration. Main outcomes were reported diagnoses of heart attack, coronary heart disease, angina and diabetes and serum liver enzyme levels. Urinary BPA concentrations in 2005/06 (geometric mean 1.79 ng/ml, 95% CI: 1.64 to 1.96) were lower than in 2003/04 (2.49 ng/ml, CI: 2.20 to 2.83, difference p-value = 0.00002). Higher BPA concentrations were associated with coronary heart disease in 2005/06 (OR per z-score increase in BPA = 1.33, 95%CI: 1.01 to 1.75, p = 0.043) and in pooled data (OR = 1.42, CI: 1.17 to 1.72, p = 0.001). Associations with diabetes did not reach significance in 2005/06, but pooled estimates remained significant (OR = 1.24, CI: 1.10 to 1.40, p = 0.001). There was no overall association with gamma glutamyl transferase concentrations, but pooled associations with alkaline phosphatase and lactate dehydrogenase remained significant. Conclusions Higher BPA exposure, reflected in higher urinary concentrations of BPA, is consistently associated with reported heart disease in the general adult population of the USA. Studies to clarify the mechanisms of these associations are urgently needed.


Environmental Science & Technology | 2010

Spatial Patterns of Plastic Debris along Estuarine Shorelines

Mark A. Browne; Tamara S. Galloway; Richard C. Thompson

The human population generates vast quantities of waste material. Macro (>1 mm) and microscopic (<1 mm) fragments of plastic debris represent a substantial contamination problem. Here, we test hypotheses about the influence of wind and depositional regime on spatial patterns of micro- and macro-plastic debris within the Tamar Estuary, UK. Debris was identified to the type of polymer using Fourier-transform infrared spectroscopy (FT-IR) and categorized according to density. In terms of abundance, microplastic accounted for 65% of debris recorded and mainly comprised polyvinylchloride, polyester, and polyamide. Generally, there were greater quantities of plastic at downwind sites. For macroplastic, there were clear patterns of distribution for less dense items, while for microplastic debris, clear patterns were for denser material. Small particles of sediment and plastic are both likely to settle slowly from the water-column and are likely to be transported by the flow of water and be deposited in areas where the movements of water are slower. There was, however, no relationship between the abundance of microplastic and the proportion of clay in sediments from the strandline. These results illustrate how FT-IR spectroscopy can be used to identify the different types of plastic and in this case was used to indicate spatial patterns, demonstrating habitats that are downwind acting as potential sinks for the accumulation of debris.


Ecotoxicology | 2001

Immunotoxicity in invertebrates: measurement and ecotoxicological relevance.

Tamara S. Galloway; Michael H. Depledge

Concern is growing regarding the impact of chemicals suspected of altering the function of the immune system in humans and wildlife. There are numerous examples of links between pollution and increased susceptibility to disease in wildlife species, including immunosuppression in harbour seals feeding on fish from contaminated sites, altered immune function in riverine fish and decreased host resistance in birds exposed to pollutants. Laboratory tests have identified potential immunological hazards posed by a range of anthropogenic chemicals in mammals and higher vertebrates. However, few reports have considered the ecological relevance of pollution-induced immunosuppression in invertebrate phyla, which constitute around 95% of all animal species and occupy key structural and functional roles in ecosystems. In this paper effects of chemicals on immune function in invertebrates are briefly reviewed and biomarkers of immunotoxicity are identified. Examples of new approaches for the measurement of immunological inflammatory reactions and stress in molluscan haemocytes are detailed. The relevance of defining the immune system as a target organ of toxicity in invertebrates is discussed and an integrated approach for the use of immunological biomarkers in environment management is proposed, combining measures of immune function and organismal viability at the biochemical, cellular and population level.


Current Biology | 2013

Microplastic Moves Pollutants and Additives to Worms, Reducing Functions Linked to Health and Biodiversity

Mark Anthony Browne; Stewart J. Niven; Tamara S. Galloway; Steve J. Rowland; Richard C. Thompson

Inadequate products, waste management, and policy are struggling to prevent plastic waste from infiltrating ecosystems [1, 2]. Disintegration into smaller pieces means that the abundance of micrometer-sized plastic (microplastic) in habitats has increased [3] and outnumbers larger debris [2, 4]. When ingested by animals, plastic provides a feasible pathway to transfer attached pollutants and additive chemicals into their tissues [5-15]. Despite positive correlations between concentrations of ingested plastic and pollutants in tissues of animals, few, if any, controlled experiments have examined whether ingested plastic transfers pollutants and additives to animals. We exposed lugworms (Arenicola marina) to sand with 5% microplastic that was presorbed with pollutants (nonylphenol and phenanthrene) and additive chemicals (Triclosan and PBDE-47). Microplastic transferred pollutants and additive chemicals into gut tissues of lugworms, causing some biological effects, although clean sand transferred larger concentrations of pollutants into their tissues. Uptake of nonylphenol from PVC or sand reduced the ability of coelomocytes to remove pathogenic bacteria by >60%. Uptake of Triclosan from PVC diminished the ability of worms to engineer sediments and caused mortality, each by >55%, while PVC alone made worms >30% more susceptible to oxidative stress. As global microplastic contamination accelerates, our findings indicate that large concentrations of microplastic and additives can harm ecophysiological functions performed by organisms.

Collaboration


Dive into the Tamara S. Galloway's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge