Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamara Veiga-Parga is active.

Publication


Featured researches published by Tamara Veiga-Parga.


Journal of Immunology | 2011

Role of IL-17 and Th17 Cells in Herpes Simplex Virus-Induced Corneal Immunopathology

Amol Suryawanshi; Tamara Veiga-Parga; Naveen K. Rajasagi; Pradeep B. J. Reddy; Sharvan Sehrawat; Shalini Sharma; Barry T. Rouse

HSV-1 infection of the cornea leads to a blinding immunoinflammatory lesion of the eye termed stromal keratitis (SK). Recently, IL-17–producing CD4+ T cells (Th17 cells) were shown to play a prominent role in many autoimmune conditions, but the role of IL-17 and/or of Th17 cells in virus immunopathology is unclear. In this study, we show that, after HSV infection of the cornea, IL-17 is upregulated in a biphasic manner with an initial peak production around day 2 postinfection and a second wave starting from day 7 postinfection with a steady increase until day 21 postinfection, a time point when clinical lesions are fully evident. Further studies demonstrated that innate cells, particularly γδ T cells, were major producers of IL-17 early after HSV infection. However, during the clinical phase of SK, the predominant source of IL-17 was Th17 cells that infiltrated the cornea only after the entry of Th1 cells. By ex vivo stimulation, the half fraction of IFN-γ–producing CD4+ T cells (Th1 cells) were HSV specific, whereas very few Th17 cells responded to HSV stimulation. The delayed influx of Th17 cells in the cornea was attributed to the local chemokine and cytokine milieu. Finally, HSV infection of IL-17R knockout mice as well as IL-17 neutralization in wild-type mice showed diminished SK severity. In conclusion, our results show that IL-17 and Th17 cells contribute to the pathogenesis of SK, the most common cause of infectious blindness in the Western world.


Immunological Reviews | 2013

Role of regulatory T cells during virus infection.

Tamara Veiga-Parga; Sharvan Sehrawat; Barry T. Rouse

The host response to viruses includes multiple cell types that have regulatory function. Most information focuses on CD4+ regulatory T cells that express the transcription factor Foxp3+ (Tregs), which are the topic of this review. We explain how viruses through specific and non‐specific means can trigger the response of thymus‐derived natural Tregs as well as induce Tregs. The latter derive under appropriate stimulation conditions either from uncommitted precursors or from differentiated cells that convert to become Tregs. We describe instances where Tregs appear to limit the efficacy of antiviral protective immunity and other, perhaps more common, immune‐mediated inflammatory conditions, where the Tregs function to limit the extent of tissue damage that occurs during a virus infection. We discuss the controversial roles that Tregs may play in the pathogenesis of human immunodeficiency and hepatitis C virus infections. The issue of plasticity is discussed, as this may result in Tregs losing their protective function when present in inflammatory environments. Finally, we mention approaches used to manipulate Treg numbers and function and assess their current value and likely future success to manage the outcome of virus infection, especially those that are responsible for chronic tissue damage.


Proceedings of the National Academy of Sciences of the United States of America | 2011

T cell immunoglobulin and mucin protein-3 (Tim-3)/Galectin-9 interaction regulates influenza A virus-specific humoral and CD8 T-cell responses

Shalini Sharma; Aarthi Sundararajan; Amol Suryawanshi; Naveen Kumar; Tamara Veiga-Parga; Vijay K. Kuchroo; Paul G. Thomas; Mark Y. Sangster; Barry T. Rouse

Reactions to pathogens are usually tuned to effect immunity and limit tissue damage. Several host counterinflammatory mechanisms inhibit tissue damage but these may also act to constrain the effectiveness of immunity to acute infections, as we demonstrate in mice acutely infected with influenza A virus (IAV). We show that compared with wild type (WT), galectin-9 knockout (G9KO) mice mounted a more robust acute phase virus-specific CD8 T-cell response as well as higher and more rapid virus-specific serum IgM, IgG, and IgA responses and also cleared virus more rapidly than did WT mice. Blocking galectin-9 signals to Tim-3–expressing cells using a Tim-3 fusion protein resulted in improved immune responses in WT mice. When IAV immune mice were challenged with a heterologous IAV, the secondary IAV-specific CD8 T-cell responses were four- to fivefold higher in G9KO compared with WT mice. Our results indicate that manipulating galectin signals may represent a convenient approach to improve immune responses to some vaccines.


Journal of Immunology | 2012

IL-17A Differentially Regulates Corneal Vascular Endothelial Growth Factor (VEGF)-A and Soluble VEGF Receptor 1 Expression and Promotes Corneal Angiogenesis after Herpes Simplex Virus Infection

Amol Suryawanshi; Tamara Veiga-Parga; Pradeep B. J. Reddy; Naveen K. Rajasagi; Barry T. Rouse

Ocular infection with HSV causes corneal neovascularization (CV), an essential step in the pathogenesis of the blinding immunoinflammatory lesion stromal keratitis. The infection results in IL-17A production, which contributes to CV in ways that together serve to shift the balance between corneal concentrations of vascular endothelial growth factor A (VEGF-A) and the soluble vascular endothelial growth factor receptor 1 molecule, which binds to VEGF-A and blocks its function (a so-called VEGF trap). Accordingly, animals lacking responses to IL-17A signaling, either because of IL-17 receptor A knockout or wild-type animals that received neutralizing mAb to IL-17A, had diminished CV, compared with controls. The procedures reduced VEGF-A protein levels but had no effect on the levels of soluble vascular endothelial growth factor receptor 1. Hence the VEGF trap was strengthened. IL-17A also caused increased CXCL1/KC synthesis, which attracts neutrophils to the inflammatory site. Neutrophils further influenced the extent of CV by acting as an additional source of VEGF-A, as did metalloproteinase enzymes that degrade the soluble receptor, inhibiting its VEGF-blocking activity. Our results indicate that suppressing the expression of IL-17A, or increasing the activity of the VEGF trap, represents a useful approach to inhibiting CV and the control of an ocular lesion that is an important cause of human blindness.


PLOS Pathogens | 2011

Controlling viral immuno-inflammatory lesions by modulating aryl hydrocarbon receptor signaling.

Tamara Veiga-Parga; Amol Suryawanshi; Barry T. Rouse

Ocular herpes simplex virus infection can cause a blinding CD4+ T cell orchestrated immuno-inflammatory lesion in the cornea called Stromal Keratitis (SK). A key to controlling the severity of SK lesions is to suppress the activity of T cells that orchestrate lesions and enhance the representation of regulatory cells that inhibit effector cell function. In this report we show that a single administration of TCDD (2, 3, 7, 8- Tetrachlorodibenzo-p-dioxin), a non-physiological ligand for the AhR receptor, was an effective means of reducing the severity of SK lesions. It acted by causing apoptosis of Foxp3- CD4+ T cells but had no effect on Foxp3+ CD4+ Tregs. TCDD also decreased the proliferation of Foxp3- CD4+ T cells. The consequence was an increase in the ratio of Tregs to T effectors which likely accounted for the reduced inflammatory responses. In addition, in vitro studies revealed that TCDD addition to anti-CD3/CD28 stimulated naïve CD4+ T cells caused a significant induction of Tregs, but inhibited the differentiation of Th1 and Th17 cells. Since a single TCDD administration given after the disease process had been initiated generated long lasting anti-inflammatory effects, the approach holds promise as a therapeutic means of controlling virus induced inflammatory lesions.


Journal of Immunology | 2012

On the Role of Regulatory T Cells during Viral-Induced Inflammatory Lesions

Tamara Veiga-Parga; Amol Suryawanshi; Sachin Mulik; Fernanda Gimenez; Shalini Sharma; Tim Sparwasser; Barry T. Rouse

Ocular HSV-1 infection can result in stromal keratitis, a blinding immunoinflammatory lesion that represents an immunopathological response to the infection. CD4+ T cells are the main orchestrators, and lesions are more severe if the regulatory T cell (Treg) response is compromised from the onset of infection. Little is known about the role of Foxp3+CD4+ Tregs during ongoing inflammatory reactions, which is the topic of this article. We used DEREG mice and depleted Tregs at different times postinfection. We show that lesions became more severe even when depletion was begun in the clinical phase of the disease. This outcome was explained both by Tregs’ influence on the activity of inflammatory effector T cells at the lesion site and by an effect in lymphoid tissues that led to reduced numbers of effectors and less trafficking of T cells and neutrophils to the eye. Our results demonstrate that Tregs can beneficially influence the impact of ongoing tissue-damaging responses to a viral infection and imply that therapies boosting Treg function in the clinical phase hold promise for controlling a lesion that is an important cause of human blindness.


Journal of Immunology | 2014

Critical Role of MicroRNA-155 in Herpes Simplex Encephalitis

Siddheshvar Bhela; Sachin Mulik; Pradeep B. J. Reddy; Raphael L. Richardson; Fernanda Gimenez; Naveen K. Rajasagi; Tamara Veiga-Parga; Alexander P. Osmand; Barry T. Rouse

HSV infection of adult humans occasionally results in life-threatening herpes simplex encephalitis (HSE) for reasons that remain to be defined. An animal system that could prove useful to model HSE could be microRNA-155 knockout (miR-155KO) mice. Thus, we observe that mice with a deficiency of miR-155 are highly susceptible to HSE with a majority of animals (75–80%) experiencing development of HSE after ocular infection with HSV-1. The lesions appeared to primarily represent the destructive consequences of viral replication, and animals could be protected from HSE by acyclovir treatment provided 4 d after ocular infection. The miR-155KO animals were also more susceptible to development of zosteriform lesions, a reflection of viral replication and dissemination within the nervous system. One explanation for the heightened susceptibility to HSE and zosteriform lesions could be because miR-155KO animals develop diminished CD8 T cell responses when the numbers, functionality, and homing capacity of effector CD8 T cell responses were compared. Indeed, adoptive transfer of HSV-immune CD8 T cells to infected miR-155KO mice at 24 h postinfection provided protection from HSE. Deficiencies in CD8 T cell numbers and function also explained the observation that miR-155KO animals were less able than control animals to maintain HSV latency. To our knowledge, our observations may be the first to link miR-155 expression with increased susceptibility of the nervous system to virus infection.


Journal of Virology | 2012

TNFRSF25 agonistic antibody and galectin-9 combination therapy controls herpes simplex virus-induced immunoinflammatory lesions

Pradeep B. J. Reddy; Taylor H. Schreiber; Naveen K. Rajasagi; Amol Suryawanshi; Sachin Mulik; Tamara Veiga-Parga; Toshiro Niki; Mitsuomi Hirashima; Eckhard R. Podack; Barry T. Rouse

ABSTRACT Ocular infection with herpes simplex virus 1 (HSV-1) results in a chronic immunoinflamammtory reaction in the cornea, which is primarily orchestrated by CD4+ T cells. Hence, targeting proinflammatory CD4+ T cells or increasing the representation of cells that regulate their function is a relevant therapeutic strategy. In this report, we demonstrate that effective therapeutic control can be achieved using a combination of approaches under circumstances where monotherapy is ineffective. We use a convenient and highly effective monoclonal antibody (MAb) approach with MAbT25 to expand cells that express the tumor necrosis factor receptor superfamily member 25 (TNFRSF25). In naïve animals, these are predominantly cells that are Foxp3-positive regulatory T cells. MAbT25 treatment before or at the time of initial HSV infection was an effective means of reducing the severity of subsequent stromal keratitis lesions. However, MAbT25 treatment was not effective if given 6 days after infection since it expanded proinflammatory effector T cells, which also express TNFRSF25. Therefore, the MAbT25 procedure was combined with galectin-9 (Gal-9), an approach that compromises the activity of T cells involved in tissue damage. The combination therapy provided highly effective lesion control over that achieved by treatment with one of them. The beneficial outcome of the combination therapy was attributed to the expansion of the regulatory T cell population that additionally expressed activation markers such as CD103 needed to access inflammatory sites. Additionally, there was a marked reduction of CD4+ gamma interferon-producing effector T cells responsible for orchestrating the tissue damage. The approach that we describe has potential application to control a wide range of inflammatory diseases, in addition to stromal keratitis, an important cause of human blindness.


Microbes and Infection | 2014

Herpes virus entry mediator (HVEM) modulates proliferation and activation of regulatory T cells following HSV-1 infection

Shalini Sharma; Naveen K. Rajasagi; Tamara Veiga-Parga; Barry T. Rouse

In many infections, especially those that are chronic such as Herpes Simplex Virus-1 (HSV-1), the outcome may be influenced by the activity of one or more types of regulatory T cells (Tregs). Some infections can cause Treg expansion, but how viruses might promote preferential Treg expansion is has been unclear. In this report, we demonstrate a possible mechanism by which HSV (Herpes Simplex virus-1) infection could act to signal and expands the Treg population. We show that CD4(+) FoxP3(+) Tregs up- regulate HVEM (herpes virus entry mediator), which is a binding site for major viral glycoprotein HSVgD, following HSV infection, which is a binding site for major viral glycoprotein HSVgD. Recombinant HSVgD enhanced the proliferation of CD4(+) FoxP3(+) Tregs cells in-vitro. Furthermore, compared to wild type (WT), HVEM deficient mice (HVEM-/-) generated a weaker Treg responses represented by significantly diminished ratios of CD4(+)FoxP3(+)/CD4(+)FoxP3(-) cells along with diminished proportions of FoxP3(+) Tregscells co-expressing Treg activation markers and a reduced MFI of FoxP3 expression on CD4(+) T cells. Consistent with defective Treg responses, HVEM-/- animals were more susceptible to HSV-1 induced ocular immunopathology, with more severe lesions in HVEM-/- animals. Our results indicate that HVEM regulates Treg responses, and its modulation could represent a useful approach to control HSV induced corneal immunopathology.


Journal of Immunology | 2011

Activation of Endothelial Roundabout Receptor 4 Reduces the Severity of Virus-Induced Keratitis

Sachin Mulik; Shalini Sharma; Amol Suryawanshi; Tamara Veiga-Parga; Pradeep B. J. Reddy; Naveen K. Rajasagi; Barry T. Rouse

Antiangiogenic molecules exert a feedback control to restrain pathological angiogenesis, which includes physical binding or inhibition of angiogenic signaling in blood vessel endothelial cells. The latter is the case in which Slit2 ligand-dependent activation of the blood vessel endothelial cell receptor roundabout 4 (Robo4) occurs. In this study, we demonstrate that Robo4 receptors are upregulated following HSV infection of the eye on the majority of the new blood vessel endothelial cells that occur in the corneal stroma. However, expression levels of the ligand for Robo4 receptors, Slit2, was not significantly increased during the disease process, and the knockdown of Slit2 gene expression using lentiviral short hairpin RNAs had no effect on the extent of pathological angiogenesis. In contrast, providing additional Slit2 protein by subconjunctival administration resulted in significantly reduced angiogenesis. The Slit2 binding to Robo4 was shown to block the downstream vascular endothelial growth factor signaling molecules Arf 6 and Rac 1 and reduce the antiapoptotic molecule Bcl-xL in blood vessel endothelial cells. Our results indicate that augmenting the host Robo4/Slit2 system could provide a useful therapeutic approach to control pathological angiogenesis associated with HSV induced stromal keratitis.

Collaboration


Dive into the Tamara Veiga-Parga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sachin Mulik

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aarthi Sundararajan

University of Rochester Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge