Tamara Wriessnegger
Graz University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tamara Wriessnegger.
Metabolic Engineering | 2014
Tamara Wriessnegger; Peter Augustin; Matthias Engleder; Erich Leitner; Monika Müller; Iwona Kaluzna; Martin Schürmann; Daniel Mink; Günther Zellnig; Helmut Schwab; Harald Pichler
The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources.
Progress in Lipid Research | 2013
Tamara Wriessnegger; Harald Pichler
Terpenoids comprise various structures conferring versatile functions to eukaryotes, for example in the form of prenyl-anchors they attach proteins to membranes. The physiology of eukaryotic membranes is fine-tuned by another terpenoid class, namely sterols. Evidence is accumulating that numerous membrane proteins require specific sterol structural features for function. Moreover, sterols are intermediates in the synthesis of steroids serving as hormones in higher eukaryotes. Like steroids many compounds of the terpenoid family do not contribute to membrane architecture, but serve as signalling, protective or attractant/repellent molecules. Particularly plants have developed a plenitude of terpenoid biosynthetic routes branching off early in the sterol biosynthesis pathway and, thereby, forming one of the largest groups of naturally occurring organic compounds. Many of these aromatic and volatile molecules are interesting for industrial application ranging from foods to pharmaceuticals. Combining the fortunate situation that sterol biosynthesis is highly conserved in eukaryotes with the amenability of yeasts to genetic and metabolic engineering, basically all naturally occurring terpenoids might be produced involving yeasts. Such engineered yeasts are useful for the study of biological functions and molecular interactions of terpenoids as well as for the large-scale production of high-value compounds, which are unavailable in sufficient amounts from natural sources due to their low abundance.
Biochimica et Biophysica Acta | 2009
Tamara Wriessnegger; Erich Leitner; M.R. Belegratis; Elisabeth Ingolic; Günther Daum
Here we describe for the first time isolation and biochemical characterization of highly purified mitochondrial inner and outer membranes from Pichia pastoris and systematic lipid analysis of submitochondrial fractions. Mitochondria of this yeast are best developed during growth on glycerol or sorbitol, but also on methanol or fatty acids. To obtain organelle membranes at high quality, methods of isolation and subfractionation of mitochondria originally developed for Saccharomyces cerevisiae were adapted and employed. A characteristic feature of the outer mitochondrial membrane of P. pastoris is the higher phospholipid to protein ratio and the lower ergosterol to phospholipid ratio compared to the inner membrane. Another marked difference between the two mitochondrial membranes is the phospholipid composition. Phosphatidylcholine and phosphatidylethanolamine are major phospholipids of both membranes, but the inner membrane is enriched in cardiolipin, whereas the outer membrane contains a high amount of phosphatidylinositol. The fatty acid composition of both mitochondrial membranes is similar. Variation of the carbon source, however, leads to marked changes of the fatty acid pattern both in total and mitochondrial membranes. In summary, our data are the first step to understand the P. pastoris lipidome which will be prerequisite to manipulate membrane components of this yeast for biotechnological purposes.
ChemBioChem | 2015
Matthias Engleder; Tea Pavkov-Keller; Anita Emmerstorfer; Altijana Hromic; Sabine Schrempf; Georg Steinkellner; Tamara Wriessnegger; Erich Leitner; Gernot A. Strohmeier; Iwona Kaluzna; Daniel Mink; Martin Schürmann; Silvia Wallner; Peter Macheroux; Karl Gruber; Harald Pichler
Hydratases provide access to secondary and tertiary alcohols by regio‐ and/or stereospecifically adding water to carbon‐carbon double bonds. Thereby, hydroxy groups are introduced without the need for costly cofactor recycling, and that makes this approach highly interesting on an industrial scale. Here we present the first crystal structure of a recombinant oleate hydratase originating from Elizabethkingia meningoseptica in the presence of flavin adenine dinucleotide (FAD). A structure‐based mutagenesis study targeting active site residues identified E122 and Y241 as crucial for the activation of a water molecule and for protonation of the double bond, respectively. Moreover, we also observed that two‐electron reduction of FAD results in a sevenfold increase in the substrate hydration rate. We propose the first reaction mechanism for this enzyme class that explains the requirement for the flavin cofactor and the involvement of conserved amino acid residues in this regio‐ and stereoselective hydration.
Biochimica et Biophysica Acta | 2014
Karlheinz Grillitsch; Pablo Tarazona; Lisa Klug; Tamara Wriessnegger; Günther Zellnig; Erich Leitner; Ivo Feussner; Günther Daum
Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.
Applied Microbiology and Biotechnology | 2014
Anita Emmerstorfer; Tamara Wriessnegger; Melanie Hirz; Harald Pichler
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug–target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.
Applied Microbiology and Biotechnology | 2013
Melanie Hirz; Gerald Richter; Erich Leitner; Tamara Wriessnegger; Harald Pichler
The heterologous expression of mammalian membrane proteins in lower eukaryotes is often hampered by aberrant protein localization, structure, and function, leading to enhanced degradation and, thus, low expression levels. Substantial quantities of functional membrane proteins are necessary to elucidate their structure–function relationships. Na,K-ATPases are integral, human membrane proteins that specifically interact with cholesterol and phospholipids, ensuring protein stability and enhancing ion transport activity. In this study, we present a Pichia pastoris strain which was engineered in its sterol pathway towards the synthesis of cholesterol instead of ergosterol to foster the functional expression of human membrane proteins. Western blot analyses revealed that cholesterol-producing yeast formed enhanced and stable levels of human Na,K-ATPase α3β1 isoform. ATPase activity assays suggested that this Na,K-ATPase isoform was functionally expressed in the plasma membrane. Moreover, [3H]-ouabain cell surface-binding studies underscored that the Na,K-ATPase was present in high numbers at the cell surface, surpassing reported expression strains severalfold. This provides evidence that the humanized sterol composition positively influenced Na,K-ATPase α3β1 stability, activity, and localization to the yeast plasma membrane. Prospectively, cholesterol-producing yeast will have high potential for functional expression of many mammalian membrane proteins.
Biotechnology Journal | 2015
Anita Emmerstorfer; Miriam Wimmer-Teubenbacher; Tamara Wriessnegger; Erich Leitner; Monika Müller; Iwona Kaluzna; Martin Schürmann; Daniel Mink; Günther Zellnig; Helmut Schwab; Harald Pichler
Membrane-anchored cytochrome P450 enzymes (CYPs) are a versatile and interesting class of enzymes for industrial applications, as they are capable of regio- and stereoselectively hydroxylating hydrophobic molecules. However, CYP activity requires sufficient levels of suitable cytochrome P450 reductases (CPRs) for regeneration of catalytic capacity, which is a bottleneck in many industrial applications. Searching for positive effectors of membrane-anchored CYP/CPR function, we transformed and screened selected strains from a Saccharomyces cerevisiae knockout collection for Hyoscyamus muticus premnaspirodiene oxygenase (HPO; CYP) and Arabidopsis thaliana CPR (AtCPR) expression levels, as well as for activity towards (+)-valencene. We found that in cells lacking the type III membrane protein Ice2p, AtCPR was destabilized. Remarkably, over-expression of ICE2 improved (+)-valencene hydroxylation to trans-nootkatol by 40-50%, both in resting cells and in vivo. Time-resolved immunoblot analysis and cytochrome c reductase activity assays revealed that Ice2 up-regulation stabilized AtCPR levels and activity over extended periods of bioconversion. To underscore that we had identified a novel positive effector of recombinant CYP/CPR function, we confirmed the beneficial effect of ICE2 over-expression for two further CYP/CPR combinations and the alternative host Pichia pastoris. Thus, we propose Ice2 up-regulation as a general tool for improving the applications of recombinant CYPs in yeasts.
Fems Yeast Research | 2009
Tamara Wriessnegger; Anthony Jay Sunga; James M. Cregg; Guenther Daum
Genetic manipulation of lipid biosynthetic enzymes allows modification of cellular membranes. We made use of this strategy and constructed mutants in phospholipid metabolism of Pichia pastoris, which is widely used in biotechnology for expression of heterologous proteins. Here we describe identification of two P. pastoris phosphatidylserine decarboxylases (PSDs) encoded by genes homologous to PSD1 and PSD2 from Saccharomyces cerevisiae. Using P. pastoris psd1Delta and psd2Delta mutants we investigated the contribution of the respective gene products to phosphatidylethanolamine synthesis, membrane composition and cell growth. Deletion of PSD1 caused loss of PSD activity in mitochondria, a severe growth defect on minimal media and depletion of cellular and mitochondrial phosphatidylethanolamine levels. This defect could not be compensated by Psd2p, but by supplementation with ethanolamine, which is the substrate for the cytidine diphosphate (CDP)-ethanolamine pathway, the third route of phosphatidylethanolamine synthesis in yeast. Fatty acid analysis showed selectivity of both Psd1p and Psd2p in vivo for the synthesis of unsaturated phosphatidylethanolamine species. Phosphatidylethanolamine species containing palmitic acid (16:0), however, were preferentially assembled into mitochondria. In summary, this study provides first insight into membrane manipulation of P. pastoris, which may serve as a useful method to modify cell biological properties of this microorganism for biotechnological purposes.
Fungal Genetics and Biology | 2016
Tamara Wriessnegger; Sandra Moser; Anita Emmerstorfer-Augustin; Erich Leitner; Monika Müller; Iwona Kaluzna; Martin Schürmann; Daniel Mink; Harald Pichler
Cytochrome P450 enzymes (CYPs) play an essential role in the biosynthesis of various natural compounds by catalyzing regio- and stereospecific hydroxylation reactions. Thus, CYP activities are of great interest in the production of fine chemicals, pharmaceutical compounds or flavors and fragrances. Industrial applicability of CYPs has driven extensive research efforts aimed at improving the performance of these enzymes to generate robust biocatalysts. Recently, our group has identified CYP-mediated hydroxylation of (+)-valencene as a major bottleneck in the biosynthesis of trans-nootkatol and (+)-nootkatone in Pichia pastoris. In the current study, we aimed at enhancing CYP-mediated (+)-valencene hydroxylation by over-expressing target genes identified through transcriptome analysis in P. pastoris. Strikingly, over-expression of the DNA repair and recombination gene RAD52 had a distinctly positive effect on trans-nootkatol formation. Combining RAD52 over-expression with optimization of whole-cell biotransformation conditions, i.e. optimized media composition and cultivation at higher pH value, enhanced trans-nootkatol production 5-fold compared to the initial strain and condition. These engineering approaches appear to be generally applicable for enhanced hydroxylation of hydrophobic compounds in P. pastoris as confirmed here for two additional membrane-attached CYPs, namely the limonene-3-hydroxylase from Mentha piperita and the human CYP2D6.