Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamás Arányi is active.

Publication


Featured researches published by Tamás Arányi.


Nucleic Acids Research | 2005

BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes

Gábor Tusnády; István Simon; András Váradi; Tamás Arányi

Bisulfite genomic sequencing is the most widely used technique to analyze the 5-methylation of cytosines, the prevalent covalent DNA modification in mammals. The process is based on the selective transformation of unmethylated cytosines to uridines. Then, the investigated genomic regions are PCR amplified, subcloned and sequenced. During sequencing, the initially unmethylated cytosines are detected as thymines. The efficacy of bisulfite PCR is generally low; mispriming and non-specific amplification often occurs due to the T richness of the target sequences. In order to ameliorate the efficiency of PCR, we developed a new primer-design software called BiSearch, available on the World Wide Web. It has the unique property of analyzing the primer pairs for mispriming sites on the bisulfite-treated genome and determines potential non-specific amplification products with a new search algorithm. The options of primer-design and analysis for mispriming sites can be used sequentially or separately, both on bisulfite-treated and untreated sequences. In silico and in vitro tests of the software suggest that new PCR strategies may increase the efficiency of the amplification.


BMC Bioinformatics | 2006

The BiSearch web server

Tamás Arányi; András Váradi; István Simon; Gábor Tusnády

BackgroundA large number of PCR primer-design softwares are available online. However, only very few of them can be used for the design of primers to amplify bisulfite-treated DNA templates, necessary to determine genomic DNA methylation profiles. Indeed, the number of studies on bisulfite-treated templates exponentially increases as determining DNA methylation becomes more important in the diagnosis of cancers. Bisulfite-treated DNA is difficult to amplify since undesired PCR products are often amplified due to the increased sequence redundancy after the chemical conversion. In order to increase the efficiency of PCR primer-design, we have developed BiSearch web server, an online primer-design tool for both bisulfite-treated and native DNA templates.ResultsThe web tool is composed of a primer-design and an electronic PCR (ePCR) algorithm. The completely reformulated ePCR module detects potential mispriming sites as well as undesired PCR products on both cDNA and native or bisulfite-treated genomic DNA libraries. Due to the new algorithm of the current version, the ePCR module became approximately hundred times faster than the previous one and gave the best performance when compared to other web based tools. This high-speed ePCR analysis made possible the development of the new option of high-throughput primer screening. BiSearch web server can be used for academic researchers at the http://bisearch.enzim.hu site.ConclusionBiSearch web server is a useful tool for primer-design for any DNA template and especially for bisulfite-treated genomes. The ePCR tool for fast detection of mispriming sites and alternative PCR products in cDNA libraries and native or bisulfite-treated genomes are the unique features of the new version of BiSearch software.


PLOS ONE | 2011

Expression and In Vivo Rescue of Human ABCC6 Disease-Causing Mutants in Mouse Liver

Olivier Le Saux; Krisztina Fülöp; Yukiko Yamaguchi; Attila Iliás; Zalán Szabó; Christopher Brampton; Viola Pomozi; Krisztina Huszár; Tamás Arányi; András Váradi

Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application.


Genetic Testing and Molecular Biomarkers | 2010

The R1141X Loss-of-Function Mutation of the ABCC6 Gene Is a Strong Genetic Risk Factor for Coronary Artery Disease

Gabriella Köblös; Hajnalka Andrikovics; Zoltán Prohászka; Attila Tordai; András Váradi; Tamás Arányi

Loss-of-function mutations of ABCC6 cause pseudoxanthoma elasticum (PXE). This Mendelian disorder is characterized by elastic calcification leading to dermal, ocular, and cardiovascular symptoms like coronary artery disease (CAD) and stroke. Although PXE is a recessive disease, microscopic dermal lesions, serum alterations, and higher anecdotal incidence of stroke or CAD among carriers were reported. Here we investigated the association of the c.3421C>T loss-of-function mutation of ABCC6 and CAD and stroke. A previous study demonstrated the association of the c.3421C>T mutation with CAD; however, the frequency found in the control population was unexpectedly high, contradicting, thus, the prevalence of PXE. In the present study, genomic DNA from 749 healthy blood donors was used as control, while 363 and 361 patients suffering from stroke and CAD were investigated, respectively. One carrier was found in our control group, which is in accordance with the reported prevalence of this mutation. No significant association was found between carrier status and stroke in our cohort. In contrast, a significant association of carrier status and CAD was observed (5/361 carriers: p = 0.016, odds ratio [OR] = 10.5). We propose that carriers of ABCC6 loss-of-function mutations benefit from CAD prevention therapy.


Journal of Biological Chemistry | 2005

Identification of a DNA Methylation-dependent Activator Sequence in the Pseudoxanthoma Elasticum Gene, ABCC6*

Tamás Arányi; Marcin Ratajewski; Viola Bardóczy; Lukasz Pulaski; András Bors; Attila Tordai; András Váradi

ABCC6 encodes MRP6, a member of the ABC protein family with an unknown physiological role. The human ABCC6 and its two pseudogenes share 99% identical DNA sequence. Loss-of-function mutations of ABCC6 are associated with the development of pseudoxanthoma elasticum (PXE), a recessive hereditary disorder affecting the elastic tissues. Various disease-causing mutations were found in the coding region; however, the mutation detection rate in the ABCC6 coding region of bona fide PXE patients is only ∼80%. This suggests that polymorphisms or mutations in the regulatory regions may contribute to the development of the disease. Here, we report the first characterization of the ABCC6 gene promoter. Phylogenetic in silico analysis of the 5′ regulatory regions revealed the presence of two evolutionarily conserved sequence elements embedded in CpG islands. The study of DNA methylation of ABCC6 and the pseudogenes identified a correlation between the methylation of the CpG island in the proximal promoter and the ABCC6 expression level in cell lines. Both activator and repressor sequences were uncovered in the proximal promoter by reporter gene assays. The most potent activator sequence was one of the conserved elements protected by DNA methylation on the endogenous gene in non-expressing cells. Finally, in vitro methylation of this sequence inhibits the transcriptional activity of the luciferase promoter constructs. Altogether these results identify a DNA methylation-dependent activator sequence in the ABCC6 promoter.


Epigenetics | 2012

Rapid turnover of DNA methylation in human cells

Yoshiaki Yamagata; Pál Tamás Szabó; Dávid Szüts; Caroline Bacquet; Tamás Arányi; Andras Paldi

Recent studies demonstrated that cytosine methylation in the genome can be reversed without DNA replication by enzymatic mechanisms based on base excision-repair pathways. Both enzymatic methylation and demethylation mechanisms are active in the cell nucleus at the same time. One can hypothesize that the actual level of CpG methylation could be the result of a balance between the two antagonistic processes with a rapid turnover. In the present study, we used mass spectrometry to measure the total methyl-cytosine content of the genome in cultured human cells after short incubation with the known methyltransferase inhibitor 5-deoxy-azacytidine. A significant decrease of the DNA methylation was observed. Indeed, the inhibition of the methylation can only result in a rapid reduction of the overall methyl-cytosine level if the process of demethylation is simultaneous. These observations suggest that the enzymatic mechanisms responsible of the opposing reactions of DNA methylation and demethylation act simultaneously and may result in a continuous and rapid turnover of methylated cytosines. This conclusion is supported by the observation that 5-deoxy-azacytidine was incorporated in the genomic DNA of non-dividing cells and could be detected as soon as after two hours of incubation, hence providing a mechanistic explanation to the inhibition of methyltransferases. The observations are compatible with the idea that the enzymatic mechanisms that bring together of the opposing reactions of DNA methylation and demethylation act simultaneously and may result in a continuous and unsuspected rapid turnover of DNA methylation. This conclusion is at odds with the generally accepted view of high stability of cytosine methylation where the role of enzymatic demethylation is considered as limited to some special situations such as transcription. It places DNA methylation in the same category as other epigenetic modifications with covalent modifications dynamically added to and removed from the chromatin with high turnover rate.


Current Drug Targets | 2011

ABCC6 as a Target in Pseudoxanthoma Elasticum

András Váradi; Zalán Szabó; Viola Pomozi; Hugues de Boussac; Krisztina Fülöp; Tamás Arányi

The ABCC6 gene encodes an organic anion transporter protein, ABCC6/MRP6. Mutations in the gene cause a rare, recessive genetic disease, pseudoxanthoma elasticum, while the loss of one ABCC6 allele is a genetic risk factor in coronary artery disease. We review here the information available on gene structure, evolution as well as the present knowledge on its transcriptional regulation. We give a detailed description of the characteristics of the protein, and analyze the relationship between the distributions of missense disease-causing mutations in the predicted three-dimensional structure of the transporter, which suggests functional importance of the domain-domain interactions. Though neither the physiological function of the protein nor its role in the pathobiology of the diseases are known, a current hypothesis that ABCC6 may be involved in the efflux of one form of Vitamin K from the liver is discussed. Finally, we analyze potential strategies how the gene can be targeted on the transcriptional level to increase protein expression in order to compensate for reduced activity. In addition, pharmacologic correction of trafficking-defect mutants or suppression of stop codon mutations as potential future therapeutic interventions are also reviewed.


Stem cell reports | 2014

Aberrant α-Adrenergic Hypertrophic Response in Cardiomyocytes from Human Induced Pluripotent Cells

Gabor Foldes; Elena Matsa; Janos Kriston-Vizi; Thomas Leja; Stefan Amisten; Ljudmila Kolker; Thusharika Kodagoda; Nazanin F. Dolatshad; Maxime Mioulane; Karine Vauchez; Tamás Arányi; Robin Ketteler; Michael D. Schneider; Chris Denning; Sian E. Harding

Summary Cardiomyocytes from human embryonic stem cells (hESC-CMs) and induced pluripotent stem cells (hiPSC-CMs) represent new models for drug discovery. Although hypertrophy is a high-priority target, we found that hiPSC-CMs were systematically unresponsive to hypertrophic signals such as the α-adrenoceptor (αAR) agonist phenylephrine (PE) compared to hESC-CMs. We investigated signaling at multiple levels to understand the underlying mechanism of this differential responsiveness. The expression of the normal α1AR gene, ADRA1A, was reversibly silenced during differentiation, accompanied by ADRA1B upregulation in either cell type. ADRA1B signaling was intact in hESC-CMs, but not in hiPSC-CMs. We observed an increased tonic activity of inhibitory kinase pathways in hiPSC-CMs, and inhibition of antihypertrophic kinases revealed hypertrophic increases. There is tonic suppression of cell growth in hiPSC-CMs, but not hESC-CMs, limiting their use in investigation of hypertrophic signaling. These data raise questions regarding the hiPSC-CM as a valid model for certain aspects of cardiac disease.


Molecular Biology and Evolution | 2008

How Segmental Duplications Shape Our Genome: Recent Evolution of ABCC6 and PKD1 Mendelian Disease Genes

Orsolya Symmons; András Váradi; Tamás Arányi

The completion of the Human Genome Project has brought the understanding that our genome contains an unexpectedly large proportion of segmental duplications. This poses the challenge of elucidating the consequences of recent duplications on physiology. We have conducted an in-depth study of a subset of segmental duplications on chromosome 16. We focused on PKD1 and ABCC6 duplications because mutations affecting these genes are responsible for the Mendelian disorders autosomal dominant polycystic kidney disease and pseudoxanthoma elasticum, respectively. We establish that duplications of PKD1 and ABCC6 are associated to low-copy repeat 16a and show that such duplications have occurred several times independently in different primate species. We demonstrate that partial duplication of PKD1 and ABCC6 has numerous consequences: the pseudogenes give rise to new transcripts and mediate gene conversion, which not only results in disease-causing mutations but also serves as a reservoir for sequence variation. The duplicated segments are also involved in submicroscopic and microscopic genomic rearrangements, contributing to structural variation in human and chromosomal break points in the gibbon. In conclusion, our data shed light on the recent and ongoing evolution of chromosome 16 mediated by segmental duplication and deepen our understanding of the history of two Mendelian disorder genes.


Journal of Biological Chemistry | 2010

The ERK1/2-Hepatocyte Nuclear Factor 4α Axis Regulates Human ABCC6 Gene Expression in Hepatocytes

Hugues de Boussac; Marcin Ratajewski; Iwona Sachrajda; Gabriella Köblös; Attila Tordai; Lukasz Pulaski; László Buday; András Váradi; Tamás Arányi

ABCC6 mutations are responsible for the development of pseudoxanthoma elasticum, a rare recessive disease characterized by calcification of elastic fibers. Although ABCC6 is mainly expressed in the liver the disease has dermatologic, ocular, and cardiovascular symptoms. We investigated the transcriptional regulation of the gene and observed that hepatocyte growth factor (HGF) inhibits its expression in HepG2 cells via the activation of ERK1/2. Similarly, other factors activating the cascade also inhibited ABCC6 expression. We identified the ERK1/2 response element in the proximal promoter by luciferase reporter gene assays. This site overlapped with a region conferring the tissue-specific expression pattern to the gene and with a putative hepatocyte nuclear factor 4α (HNF4α) binding site. We demonstrated that HNF4α regulates the expression of ABCC6, acts through the putative binding site, and determines its cell type-specific expression. We also showed that HNF4α is inhibited by the activation of the ERK1/2 cascade. In conclusion we describe here the first regulatory pathway of ABCC6 expression showing that the ERK1/2-HNF4α axis has an important role in regulation of the gene.

Collaboration


Dive into the Tamás Arányi's collaboration.

Top Co-Authors

Avatar

András Váradi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Krisztina Fülöp

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Bacquet

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Viola Pomozi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gábor Tusnády

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hugues de Boussac

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

András Bors

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Brózik

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Flóra Szeri

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge