Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamás Dóczi is active.

Publication


Featured researches published by Tamás Dóczi.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice

Zsolt Vajda; Michael Pedersen; Ernst-Martin Füchtbauer; Karin Wertz; Hans Stødkilde-Jørgensen; Endre Sulyok; Tamás Dóczi; John D. Neely; Peter Agre; Jørgen Frøkiær; Søren Nielsen

Cerebral water accumulation was studied during induction of brain edema in dystrophin-null transgenic mice (mdx-βgeo) and control mice. Immunofluorescence and immunoelectron microscopic analyses of dystrophin-null brains revealed a dramatic reduction of AQP4 (aquaporin-4) in astroglial end-feet surrounding capillaries (blood–brain barrier) and at the glia limitans (cerebrospinal fluid–brain interface). The AQP4 protein is mislocalized, because immunoblotting showed that the total AQP4 protein abundance was unaltered. Brain edema was induced by i.p. injection of distilled water and 8-deamino-arginine vasopressin. Changes in cerebral water compartments were assessed by diffusion-weighted MRI with determination of the apparent diffusion coefficient (ADC). In dystrophin-null mice and control mice, ADC gradually decreased by 5–6% from baseline levels during the first 35 min, indicating the initial phase of intracellular water accumulation is similar in the two groups. At this point, the control mice sustained an abrupt, rapid decline in ADC to 58% ± 2.2% of the baseline at 52.5 min, and all of the animals were dead by 56 min. After a consistent delay, the dystrophin-null mice sustained a similar decline in ADC to 55% ± 3.4% at 66.5 min, when all of the mice were dead. These results demonstrate that dystrophin is necessary for polarized distribution of AQP4 protein in brain where facilitated movements of water occur across the blood–brain barrier and cerebrospinal fluid–brain interface. Moreover, these results predict that interference with the subcellular localization of AQP4 may have therapeutic potential for delaying the onset of impending brain edema.


Nature Genetics | 2010

Genome-wide association study of intracranial aneurysm identifies three new risk loci

Katsuhito Yasuno; Kaya Bilguvar; Philippe Bijlenga; Siew Kee Low; Boris Krischek; Georg Auburger; Matthias Simon; Dietmar Krex; Zulfikar Arlier; Nikhil R. Nayak; Ynte M. Ruigrok; Mika Niemelä; Atsushi Tajima; Mikael von und zu Fraunberg; Tamás Dóczi; Florentina Wirjatijasa; Akira Hata; Jordi Blasco; Ági Oszvald; Hidetoshi Kasuya; Gulam Zilani; Beate Schoch; Pankaj Singh; Carsten Stüer; Roelof Risselada; Jürgen Beck; Teresa Sola; Filomena Ricciardi; Arpo Aromaa; Thomas Illig

Saccular intracranial aneurysms are balloon-like dilations of the intracranial arterial wall; their hemorrhage commonly results in severe neurologic impairment and death. We report a second genome-wide association study with discovery and replication cohorts from Europe and Japan comprising 5,891 cases and 14,181 controls with ∼832,000 genotyped and imputed SNPs across discovery cohorts. We identified three new loci showing strong evidence for association with intracranial aneurysms in the combined dataset, including intervals near RBBP8 on 18q11.2 (odds ratio (OR) = 1.22, P = 1.1 × 10−12), STARD13-KL on 13q13.1 (OR = 1.20, P = 2.5 × 10−9) and a gene-rich region on 10q24.32 (OR = 1.29, P = 1.2 × 10−9). We also confirmed prior associations near SOX17 (8q11.23–q12.1; OR = 1.28, P = 1.3 × 10−12) and CDKN2A-CDKN2B (9p21.3; OR = 1.31, P = 1.5 × 10−22). It is noteworthy that several putative risk genes play a role in cell-cycle progression, potentially affecting the proliferation and senescence of progenitor-cell populations that are responsible for vascular formation and repair.


Neurosurgery | 1986

Blood-Brain Barrier Damage during the Acute Stage of Subarachnoid Hemorrhage, as Exemplified by a New Animal Model

Tamás Dóczi; Ferenc Joó; Géza Ádám; Béla Bozóky; Péter Szerdahelyi

Models have been devised and characterized in the laboratory rat for studying the neuropathology of subarachnoid hemorrhage. Several ways of injecting blood via different routes have been tried; cortical subarachnoid administration is the most reproducible suitable model. The location of injected blood was detected in histological sections. In this rat model for subarachnoid hemorrhage, the arterial blood pressure and the intracranial pressure did not elevate significantly, and the influence of major ischemic components in the development of brain edema could also be ruled out. Measurements performed on the water, electrolyte, and albumin contents of brain tissue have clearly indicated that the brain edema developing in the acute stage of rat experimental subarachnoid hemorrhage could be classified as having a primarily vasogenic component as well. These findings may have implications in the treatment of subarachnoid hemorrhage.


Journal of Neurotrauma | 2003

Preinjury Administration of the Calpain Inhibitor MDL-28170 Attenuates Traumatically Induced Axonal Injury

András Büki; Orsolya Farkas; Tamás Dóczi; John T. Povlishock

Traumatic brain injury (TBI) evokes diffuse (traumatic) axonal injury (TAI), which contributes to morbidity and mortality. Damaged axons display progressive alterations gradually evolving to axonal disconnection. In severe TAI, the tensile forces of injury lead to a focal influx of Ca2+, initiating a series of proteolytic processes wherein the cysteine proteases, calpain and caspase modify the axonal cytoskeleton, causing irreversible damage over time postinjury. Although several studies have demonstrated that the systemic administration of calpain inhibitors reduces the extent of ischemic and traumatic contusional injury a direct beneficial effect on TAI has not been established to date. The current study was initiated to address this issue in an impact acceleration rat-TBI model in order to provide further evidence on the contribution of calpain-mediated proteolytic processes in the pathogenesis of TAI, while further supporting the utility of calpain-inhibitors. A single tail vein bolus injection of 30 mg/kg MDL-28170 was administered to Wistar rats 30 min preinjury. After injury the rats were allowed to survive 120 min when they were perfused with aldehydes. Brains were processed for immunohistochemical localization of damaged axonal profiles displaying either amyloid precursor protein (APP)- or RMO-14-immunoreactivity (IR), both considered markers of specific features of TAI. Digital data acquisition and statistical analysis demonstrated that preinjury administration of MDL-28170 significantly reduced the mean number of damaged RMO-14- as well as APP-IR axonal profiles in the brainstem fiber tracts analyzed. These results further underscore the role of calpain-mediated proteolytic processes in the pathogenesis of DAI and support the potential use of cell permeable calpain-inhibitors as a rational therapeutic approach in TBI.


Journal of Neurotrauma | 2012

Brain Injury Biomarkers May Improve the Predictive Power of the IMPACT Outcome Calculator

Endre Czeiter; Stefania Mondello; Noémi Kovács; János Sándor; Andrea Gabrielli; Kara Schmid; Frank C. Tortella; Kevin K. W. Wang; Ronald L. Hayes; Pál Barzó; Erzsébet Ezer; Tamás Dóczi; András Büki

Outcome prediction following severe traumatic brain injury (sTBI) is a widely investigated field of research. A major breakthrough is represented by the IMPACT prognostic calculator based on admission data of more than 8500 patients. A growing body of scientific evidence has shown that clinically meaningful biomarkers, including glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), and αII-spectrin breakdown product (SBDP145), could also contribute to outcome prediction. The present study was initiated to assess whether the addition of biomarkers to the IMPACT prognostic calculator could improve its predictive power. Forty-five sTBI patients (GCS score≤8) from four different sites were investigated. We utilized the core model of the IMPACT calculator (age, GCS motor score, and reaction of pupils), and measured the level of GFAP, UCH-L1, and SBDP145 in serum and cerebrospinal fluid (CSF). The forecast and actual 6-month outcomes were compared by logistic regression analysis. The results of the core model itself, as well as serum values of GFAP and CSF levels of SBDP145, showed a significant correlation with the 6-month mortality using a univariate analysis. In the core model, the Nagelkerke R(2) value was 0.214. With multivariate analysis we were able to increase this predictive power with one additional biomarker (GFAP in CSF) to R(2)=0.476, while the application of three biomarker levels (GFAP in CSF, GFAP in serum, and SBDP145 in CSF) increased the Nagelkerke R(2) to 0.700. Our preliminary results underline the importance of biomarkers in outcome prediction, and encourage further investigation to expand the predictive power of contemporary outcome calculators and prognostic models in TBI.


Magnetic Resonance in Medicine | 2004

The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization.

Attila Schwarcz; Péter Bogner; Philippe Meric; Jean Loup Correze; Zoltán Berente; József Pál; Ferenc Gallyas; Tamás Dóczi; Brigitte Gillet; Jean Claude Beloeil

It is generally believed that the apparent diffusion coefficient (ADC) changes measured by diffusion‐weighted imaging (DWI) in brain pathologies are related to alterations in the water compartments. The aim of this study was to elucidate the role of compartmentalization in DWI via biexponential analysis of the signal decay due to diffusion. DWI experiments were performed on mouse brain over an extended range of b‐values (up to 10000 mm–2 s) under intact, global ischemic, and cold‐injury conditions. DWI was additionally applied to centrifuged human erythrocyte samples with a negligible extracellular space. Biexponential signal decay was found to occur in the cortex of the intact mouse brain. During global ischemia, in addition to a drop in the ADC in both components, a shift from the volume fraction of the rapidly diffusing component to the slowly diffusing one was observed. In cold injury, the biexponential signal decay was still present despite the electron‐microscopically validated disintegration of the membranes. The biexponential function was also applicable for fitting of the data obtained on erythrocyte samples. The results suggest that compartmentalization is not an essential feature of biexponential decay in diffusion experiments. Magn Reson Med 51:278–285, 2004.


Journal of Neurotrauma | 2013

Multi-Modal Magnetic Resonance Imaging in the Acute and Sub-Acute Phase of Mild Traumatic Brain Injury: Can We See the Difference?

Arnold Tóth; Noémi Kovács; Gábor Perlaki; Gergely Orsi; Mihály Aradi; Hedvig Komáromy; Erzsébet Ezer; Péter Bukovics; Orsolya Farkas; J. Janszky; Tamás Dóczi; András Büki; Attila Schwarcz

Advanced magnetic resonance imaging (MRI) methods were shown to be able to detect the subtle structural consequences of mild traumatic brain injury (mTBI). The objective of this study was to investigate the acute structural alterations and recovery after mTBI, using diffusion tensor imaging (DTI) to reveal axonal pathology, volumetric analysis, and susceptibility weighted imaging (SWI) to detect microhemorrhage. Fourteen patients with mTBI who had computed tomography with negative results underwent MRI within 3 days and 1 month after injury. High resolution T1-weighted imaging, DTI, and SWI, were performed at both time points. A control group of 14 matched volunteers were also examined following the same imaging protocol and time interval. Tract-Based Spatial Statistics (TBSS) were performed on DTI data to reveal group differences. T1-weighted images were fed into Freesurfer volumetric analysis. TBSS showed fractional anisotropy (FA) to be significantly (corrected p<0.05) lower, and mean diffusivity (MD) to be higher in the mTBI group in several white matter tracts (FA=40,737; MD=39,078 voxels) compared with controls at 72 hours after injury and still 1month later for FA. Longitudinal analysis revealed significant change (i.e., normalization) of FA and MD over 1 month dominantly in the left hemisphere (FA=3408; MD=7450 voxels). A significant (p<0.05) decrease in cortical volumes (mean 1%) and increase in ventricular volumes (mean 3.4%) appeared at 1 month after injury in the mTBI group. SWI did not reveal microhemorrhage in our patients. Our findings present dynamic micro- and macrostructural changes occurring in the acute to sub-acute phase in mTBI, in very mildly injured patients lacking microhemorrhage detectable by SWI. These results underscore the importance of strictly defined image acquisition time points when performing MRI studies on patients with mTBI.


Acta Neurochirurgica | 2005

Spectrin breakdown products in the cerebrospinal fluid in severe head injury – preliminary observations

O Farkas; B Polgár; J. Szekeres-Barthó; Tamás Dóczi; John T. Povlishock; András Büki

SummaryBackground. Calcium-induced proteolytic processes are considered key players in the progressive pathobiology of traumatic brain injury (TBI). Activation of calpain and caspases after TBI leads to the cleavage of cytoskeletal proteins such as non-erythroid alpha II-spectrin. Recent reports demonstrate that the levels of spectrin and spectrin breakdown products (SBDPs) are elevated in vitro after mechanical injury, in the cerebrospinal fluid (CSF) and brain tissue following experimental TBI, and in human brain tissue after TBI.Methods. This study was initiated to detect spectrin and SBDP accumulation in the ventricular CSF of 12 severe TBI-patients with raised intracranial pressure (ICP). Nine patients with non-traumatically elevated ICP and 5 undergoing diagnostic lumbar puncture (LP) served as controls. Intact spectrin and calpain and caspase specific SBDPs in CSF collected once a day over a several day period were assessed via Western blot analysis. Parameters of severity and outcome such as ICP, Glasgow Coma Scale and Glasgow Outcome Scale were also monitored in order to reveal a potential correlation between these CSF markers and clinical parameters.Results. In control patients undergone LP no immunoreactivity was detected. Non-erythroid alpha-II-spectrin and SBDP occurred more frequently and their level was significantly higher in the CSF of TBI patients than in other pathological conditions associated with raised ICP. Those TBI patients followed for several days post-injury revealed a consistent temporal pattern for protein accumulation with the highest level achieved on the 2nd –3rd days after TBI.Conclusion. Elevation of calpain and caspase specific SBDPs is a significant finding in TBI patients indicating that intact brain spectrin- and SBDP-levels are closely associated with the specific neurochemical processes evoked by TBI. The results strongly support the potential utility of these surrogate markers in the clinical monitoring of patients with severe TBI and provide further evidence of the role of calcium-induced, calpain- and caspase-mediated structural proteolysis in TBI.


Journal of Cerebral Blood Flow and Metabolism | 2011

Isolated human and rat cerebral arteries constrict to increases in flow: role of 20-HETE and TP receptors.

Peter Toth; Bernadett Rozsa; Zsolt Springo; Tamás Dóczi; Akos Koller

Elevation of intraluminal pressure increases vasomotor tone, which thought to have a substantial role in regulation of cerebral blood flow (CBF). Interestingly, responses of cerebral vessels to increases in flow varied and have not been studied in human cerebral arteries. We hypothesized that increases in flow elicit constrictions of isolated human and rat cerebral arteries and aimed to elucidate the underlying mechanisms. Human cerebral arteries and rat middle cerebral arteries constricted to increases in flow (P<0.05). Simultaneous increase in intraluminal flow + pressure further reduced the diameter compared with pressure-induced changes (P<0.05), leading to constant estimated CBF. Flow-induced constrictions were abolished by HET0016 (inhibitor of synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) or inhibition of COXs or blocking TP (thromboxane A2/prostaglandin H2, receptors and attenuated by scavenging reactive oxygen species (ROS). Flow-enhanced ROS formation was significantly reduced by HET0016. In conclusion, in human and rat cerebral arteries (1) increases in flow elicit constrictions, (2) signaling mechanism of flow-induced constriction of cerebral arteries involves enhanced production of ROS, COX activity, and mediated by 20-HETE via TP receptors, and (3) we propose that simultaneous operation of pressure- and flow-induced constrictions is necessary to provide an effective autoregulation of CBF.


Acta Neurochirurgica | 1993

Volume regulation of the brain tissue—a survey

Tamás Dóczi

SummaryThough the brain bulk has been considered to be constant in several pressure homeostasis studies, the central nervous tissue may be responsible for the accommodation of extracerebral masses exceeding the volume regulation capacity of the cerebral blood and cerebrospinal fluid. Volume buffering of the nervous tissue may even be functioning in parallel, in conjunction with the “fluid” compartments. Of the existing volume regulatory models, the following are discussed:osmotic feedback (buffering) preventing major fluid shifts in osmotic or pressure disequilibrium at the blood brain barrier (BBB), and the4-compartment model, which under steady-state conditions can be regarded as an analogue of systemic tissue volume regulation, i.e. secretion of fluid at the BBB, bulk flow of interstitial space fluid (ISF) in the brain and absorption via the cerebrospinal fluid (CSF). The most recent data are presented, confirming that accommodation of space occupation by the nervous tissue is achieved via shrinkage of the extracerebral fluid (ECF), while the cell volume remains relatively constant. These findings confirm Hakims classical hypothesis, based on biomechanical considerations, that the brain behaves like a sponge.The data presented in this survey point to a more general hypothesis: the brain interstitial space can vary in volume according to physiological and pathological stress, within certain bounds this being a reversible process which does not affect brain function.The potential role of the central neuro-endocrine system in brain volume regulation is discussed. Vasopressin (AVP) and atriopeptin (ANP) probably, function within the brain via a paracrine mechanism, as physiological regulators of brain cell and ISF volume. AVP and ANP are released in the central nervous system (CNS) independently from the periphery, and influence tissue water conservation and release directly. The future role of peptide analogues in the treatment of raised intracranial pressure and brain oedema are considered.

Collaboration


Dive into the Tamás Dóczi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge