Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamás Görföl is active.

Publication


Featured researches published by Tamás Görföl.


PLOS ONE | 2011

Pan-European Distribution of White-Nose Syndrome Fungus (Geomyces destructans) Not Associated with Mass Mortality

Sébastien J. Puechmaille; Gudrun Wibbelt; Vanessa Korn; Hubert T. Fuller; Frédéric Forget; Kristin Mühldorfer; Andreas Kurth; Wiesław Bogdanowicz; Christophe Borel; Thijs Bosch; Thomas Cherezy; Mikhail Drebet; Tamás Görföl; Anne-Jifke Haarsma; Frank Herhaus; Guénael Hallart; Matthias Hammer; Christian Jungmann; Yann Le Bris; Lauri Lutsar; Matti Masing; Bart Mulkens; Karsten Passior; Martin Starrach; Andrzej Wojtaszewski; Ulrich Zöphel; Emma C. Teeling

Background The dramatic mass mortalities amongst hibernating bats in Northeastern America caused by “white nose-syndrome” (WNS) continue to threaten populations of different bat species. The cold-loving fungus, Geomyces destructans, is the most likely causative agent leading to extensive destruction of the skin, particularly the wing membranes. Recent investigations in Europe confirmed the presence of the fungus G. destructans without associated mass mortality in hibernating bats in six countries but its distribution remains poorly known. Methodology/Principal Findings We collected data on the presence of bats with white fungal growth in 12 countries in Europe between 2003 and 2010 and conducted morphological and genetic analysis to confirm the identity of the fungus as Geomyces destructans. Our results demonstrate the presence of the fungus in eight countries spanning over 2000 km from West to East and provide compelling photographic evidence for its presence in another four countries including Romania, and Turkey. Furthermore, matching prevalence data of a hibernaculum monitored over two consecutive years with data from across Europe show that the temporal occurrence of the fungus, which first becomes visible around February, peaks in March but can still be seen in some torpid bats in May or June, is strikingly similar throughout Europe. Finally, we isolated and cultured G. destructans from a cave wall adjacent to a bat with fungal growth. Conclusions/Significance G. destructans is widely found over large areas of the European continent without associated mass mortalities in bats, suggesting that the fungus is native to Europe. The characterisation of the temporal variation in G. destructans growth on bats provides reference data for studying the spatio-temporal dynamic of the fungus. Finally, the presence of G. destructans spores on cave walls suggests that hibernacula could act as passive vectors and/or reservoirs for G. destructans and therefore, might play an important role in the transmission process.


Emerging Infectious Diseases | 2010

White-Nose Syndrome Fungus (Geomyces destructans) in Bats, Europe

Gudrun Wibbelt; Andreas Kurth; David Hellmann; Manfred Weishaar; Alex Barlow; Michael Veith; Julia Prüger; Tamás Görföl; Lena Grosche; Fabio Bontadina; Ulrich Zöphel; Hans-Peter Seidl; Paul M. Cryan; David S. Blehert

Unlike bats in North America, bats in Europe are not killed by this fungus.


PLOS ONE | 2012

A Triple-Isotope Approach to Predict the Breeding Origins of European Bats

Ana G. Popa-Lisseanu; Karin Sörgel; Anja Luckner; Leonard I. Wassenaar; Carlos Ibáñez; Stephanie Kramer-Schadt; Mateusz Ciechanowski; Tamás Görföl; Ivo Niermann; Grégory Beuneux; Robert W. Mysłajek; Javier Juste; Jocelyn Fonderflick; Detlev H. Kelm; Christian C. Voigt

Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (δD) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of δD as a robust geographical tracer of breeding origins of European bats by measuring δD in hair of five sedentary bat species from 45 locations throughout Europe. The δD of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking δD of bat hair to precipitation δD of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used δ13C and δ15N to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe.


Vector-borne and Zoonotic Diseases | 2014

Molecular survey of RNA viruses in Hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses.

Gábor Kemenesi; Bianka Dallos; Tamás Görföl; Sándor Boldogh; Péter Estók; Kornélia Kurucz; Anna Kutas; Fanni Földes; Miklós Oldal; Viktória Németh; Vito Martella; Krisztián Bányai; Ferenc Jakab

UNLABELLED Background: Bat-borne viruses pose a potential risk to human health and are the focus of increasing scientific interest. To start gaining information about bat-transmitted viruses in Hungary, we tested multiple bat species for several virus groups between 2012 and 2013. MATERIALS AND METHODS Fecal samples were collected from bats across Hungary. We performed group-specific RT-PCR screening for astro-, calici-, corona-, lyssa-, othoreo-, paramyxo-, and rotaviruses. Positive samples were selected and sequenced for further phylogenetic analyses. RESULTS A total of 447 fecal samples, representing 24 European bat species were tested. Novel strains of astroviruses, coronaviruses, and caliciviruses were detected and analyzed phylogenetically. Out of the 447 tested samples, 40 (9%) bats were positive for at least one virus. Bat-transmitted astroviruses (BtAstV) were detected in eight species with a 6.93% detection rate (95% confidence interval [CI] 4.854, 9.571). Coronaviruses (BtCoV) were detected in seven bat species with a detection rate of 1.79% (95% CI 0.849, 3.348), whereas novel caliciviruses (BtCalV) were detected in three bat species with a detection rate of 0.67% (95% CI 0.189, 1.780). Phylogenetic analyses revealed a great diversity among astrovirus strains, whereas the Hungarian BtCoV strains clustered together with both alpha- and betacoronavirus strains from other European countries. One of the most intriguing findings of our investigation is the discovery of novel BtCalVs in Europe. The Hungarian BtCalV did not cluster with any of the calcivirus genera identified in the family so far. CONCLUSIONS We have successfully confirmed BtCoVs in numerous bat species. Furthermore, we have described new bat species harboring BtAstVs in Europe and found new species of CalVs. Further long-term investigations involving more species are needed in the Central European region for a better understanding on the host specificity, seasonality, phylogenetic relationships, and the possible zoonotic potential of these newly described viruses.


PLOS ONE | 2013

Skin Lesions in European Hibernating Bats Associated with Geomyces destructans, the Etiologic Agent of White-Nose Syndrome

Gudrun Wibbelt; Sébastien J. Puechmaille; Bernd Ohlendorf; Kristin Mühldorfer; Thijs Bosch; Tamás Görföl; Karsten Passior; Andreas Kurth; Daniel Lacremans; Frédéric Forget

White-nose syndrome (WNS) has claimed the lives of millions of hibernating insectivorous bats in North America. Its etiologic agent, the psychrophilic fungus Geomyces destructans, causes skin lesions that are the hallmark of the disease. The fungal infection is characterized by a white powdery growth on muzzle, ears and wing membranes. While WNS may threaten some species of North American bats with regional extinction, infection in hibernating bats in Europe seems not to be associated with significant mortality. We performed histopathological investigations on biopsy samples of 11 hibernating European bats, originating from 4 different countries, colonized by G. destructans. One additional bat was euthanized to allow thorough examination of multiple strips of its wing membranes. Molecular analyses of touch imprints, swabs and skin samples confirmed that fungal structures were G. destructans. Additionally, archived field notes on hibernacula monitoring data in the Harz Mountains, Germany, over an 11-year period (2000–2011) revealed multiple capture-recapture events of 8 banded bats repeatedly displaying characteristic fungal colonization. Skin lesions of G. destructans-affected hibernating European bats are intriguingly similar to the epidermal lesions described in North American bats. Nevertheless, deep invasion of fungal hyphae into the dermal connective tissue with resulting ulceration like in North American bats was not observed in the biopsy samples of European bats; all lesions found were restricted to the layers of the epidermis and its adnexae. Two bats had mild epidermal cupping erosions as described for North American bats. The possible mechanisms for any difference in outcomes of G. destructans infection in European and North American bats still need to be elucidated.


Parasites & Vectors | 2014

Bat ticks revisited: Ixodes ariadnae sp. nov. and allopatric genotypes of I. vespertilionis in caves of Hungary

Sándor Hornok; Jenő Kontschán; Dávid Kováts; Richárd Kovács; Dorottya Angyal; Tamás Görföl; Zsolt Polacsek; Zsuzsa Kalmár; Andrei Daniel Mihalca

BackgroundIn Europe two ixodid bat tick species, Ixodes vespertilionis and I. simplex were hitherto known to occur.MethodsBat ticks were collected from cave walls and bats in Hungary. Their morphology and genotypes were compared with microscopy and conventional PCR (followed by sequencing), respectively.ResultsA year-round activity of I. vespertilionis was observed. Molecular analysis of the cytochrome oxidase subunit I (COI) gene of twenty ticks from different caves showed that the occurrence of the most common genotype was associated with the caves close to each other. A few specimens of a morphologically different tick variant were also found and their COI analysis revealed only 86-88% sequence homology with I. simplex and I. vespertilionis, respectively.ConclusionsThe microenvironment of caves (well separated from each other) appears to support the existence of allopatric I. vespertilionis COI genotypes, most likely related to the distance between caves and to bat migration over-bridging certain caves. The name I. ariadnae sp. nov. is given to the new tick species described here for the first time.


PLOS ONE | 2016

DNA of Piroplasms of Ruminants and Dogs in Ixodid Bat Ticks.

Sándor Hornok; Krisztina Szőke; Dávid Kováts; Péter Estók; Tamás Görföl; Sándor Boldogh; Nóra Takács; Jenő Kontschán; Gábor Földvári; Levente Barti; Alexandra Corduneanu; Attila D. Sándor

In this study 308 ticks (Ixodes ariadnae: 26 larvae, 14 nymphs, five females; I. vespertilionis: 89 larvae, 27 nymphs, eight females; I. simplex: 80 larvae, 50 nymphs, nine females) have been collected from 200 individuals of 17 bat species in two countries, Hungary and Romania. After DNA extraction these ticks were molecularly analysed for the presence of piroplasm DNA. In Hungary I. ariadnae was most frequently identified from bat species in the family Vespertilionidae, whereas I. vespertilionis was associated with Rhinolophidae. Ixodes ariadnae was not found in Romania. Four, four and one new bat host species of I. ariadnae, I. vespertilionis and I. simplex were identified, respectively. DNA sequences of piroplasms were detected in 20 bat ticks (15 larvae, four nymphs and one female). I. simplex carried piroplasm DNA sequences significantly more frequently than I. vespertilionis. In I. ariadnae only Babesia vesperuginis DNA was detected, whereas in I. vespertilionis sequences of both B. vesperuginis and B. crassa. From I. simplex the DNA of B. canis, Theileria capreoli, T. orientalis and Theileria sp. OT3 were amplified, as well as a shorter sequence of the zoonotic B. venatorum. Bat ticks are not known to infest dogs or ruminants, i.e. typical hosts and reservoirs of piroplasms molecularly identified in I. vespertilionis and I. simplex. Therefore, DNA sequences of piroplasms detected in these bat ticks most likely originated from the blood of their respective bat hosts. This may indicate either that bats are susceptible to a broader range of piroplasms than previously thought, or at least the DNA of piroplasms may pass through the gut barrier of bats during digestion of relevant arthropod vectors. In light of these findings, the role of bats in the epidemiology of piroplasmoses deserves further investigation.


Infection, Genetics and Evolution | 2015

Genetic diversity and recombination within bufaviruses: Detection of a novel strain in Hungarian bats

Gábor Kemenesi; Bianka Dallos; Tamás Görföl; Péter Estók; Sándor Boldogh; Kornélia Kurucz; Miklós Oldal; Szilvia Marton; Krisztián Bányai; Ferenc Jakab

Abstract Bats are important hosts of many viruses and in several cases they may serve as natural reservoirs even for viruses with zoonotic potential worldwide, including Europe. However, they also serve as natural reservoir for other virus groups with important evolutionary relevance and yet unknown zoonotic potential. We performed viral metagenomic analyses on Miniopterus schreibersii bat fecal samples. As a result, a novel parvovirus was detected for the first time in European bats. Although, bufavirus was recently discovered as a novel human infecting parvovirus, here we report sequence data of the first bufavirus from European bats related to human bufaviruses. Based on our sequence data a possible intragenic recombination event was detected within bufaviruses which may serves as an important milestone in their evolution.


Journal of General Virology | 2015

Genetic characterization of a novel picornavirus detected in miniopterus schreibersii bats

Gábor Kemenesi; Dabing Zhang; Szilvia Marton; Bianka Dallos; Tamás Görföl; Péter Estók; Sándor Boldogh; Kornélia Kurucz; Miklós Oldal; Anna Kutas; Krisztián Bányai; Ferenc Jakab

Bats are important reservoirs of many viruses with zoonotic potential worldwide, including Europe. Among bat viruses, members of the Picornaviridae family remain a neglected group. We performed viral metagenomic analyses on Miniopterus schreibersii bat faecal samples, collected in Hungary in 2013. In the present study we report the first molecular data and genomic characterization of a novel picornavirus from the bat species M. schreibersii in Europe. Based on phylogenetic analyses, the novel bat picornaviruses unambiguously belong to the Mischivirus genus and were highly divergent from other bat-derived picornaviruses of the Sapelovirus genus. Although the Hungarian viruses were most closely related to Mischivirus A, they formed a separate monophyletic branch within the genus.


Parasites & Vectors | 2017

East and west separation of Rhipicephalus sanguineus mitochondrial lineages in the Mediterranean Basin

Sándor Hornok; Attila D. Sándor; Snežana Tomanović; Relja Beck; Gianluca D’Amico; Jenő Kontschán; Nóra Takács; Tamás Görföl; Mohammed Lamine Bendjeddou; Gábor Földvári; Róbert Farkas

BackgroundRhipicephalus sanguineus belongs to a complex of hard tick species with high veterinary-medical significance. Recently, new phylogenetic units have been discovered within R. sanguineus, which therefore needs taxonomic revision. The present study was initiated to provide new information on the phylogeography of relevant haplotypes from less studied regions of Europe and Africa. With this aim, molecular-phylogenetic analyses of two mitochondrial markers were performed on 50 ticks collected in Hungary, the Balkans, countries along the Mediterranean Sea, Kenya and Ivory Coast.ResultsIn the “temperate lineage” of R. sanguineus, based on cytochrome c oxidase subunit 1 (cox1) and 16S rRNA genes, Rhipicephalus sp. I was only found in the eastern part of the Mediterranean Basin (with relatively homogenous haplotypes), whereas Rhipicephalus sp. II occurred in the middle-to-western part of this region (with phylogenetically dichotomous haplotypes). Ticks identified as R. leporis (based on morphology and cox1 gene) were found in Kenya and Ivory Coast. These clustered phylogenetically within R. sanguineus (s.l.) (“tropical lineage”).ConclusionsIn the Mediterranean Basin two mitochondrial lineages of R. sanguineus, i.e. Rhipicephalus sp. I and Rhipicephalus sp. II exist, which show different geographical distribution. Therefore, data from this study confirm limited gene flow between Rhipicephalus sp. I and Rhipicephalus sp. II, but more evidence (analyses of nuclear markers, extensive morphological and biological comparison etc.) are necessary to infer if they belong to different species or not. The phylogenetic relationships of eastern and western African ticks, which align with R. leporis, need to be studied further within R. sanguineus (s.l.) (“tropical lineage”).

Collaboration


Dive into the Tamás Görföl's collaboration.

Top Co-Authors

Avatar

Péter Estók

Eszterházy Károly College

View shared research outputs
Top Co-Authors

Avatar

Gábor Csorba

Hungarian Natural History Museum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sándor Hornok

Szent István University

View shared research outputs
Top Co-Authors

Avatar

Vuong Tan Tu

Vietnam Academy of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jenő Kontschán

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Attila D. Sándor

University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Krisztián Bányai

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge