Tamás Holczer
Budapest University of Technology and Economics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tamás Holczer.
IEEE Communications Magazine | 2008
Panagiotis Papadimitratos; Levente Buttyán; Tamás Holczer; Elmer Schoch; Julien Freudiger; Maxim Raya; Zhendong Ma; Frank Kargl; Antonio Kung; Jean-Pierre Hubaux
Significant developments have taken place over the past few years in the area of vehicular communication systems. Now, it is well understood in the community that security and protection of private user information are a prerequisite for the deployment of the technology. This is so precisely because the benefits of VC systems, with the mission to enhance transportation safety and efficiency, are at stake. Without the integration of strong and practical security and privacy enhancing mechanisms, VC systems can be disrupted or disabled, even by relatively unsophisticated attackers. We address this problem within the SeVeCom project, having developed a security architecture that provides a comprehensive and practical solution. We present our results in a set of two articles in this issue. In this first one, we analyze threats and types of adversaries, identify security and privacy requirements, and present a spectrum of mechanisms to secure VC systems. We provide a solution that can be quickly adopted and deployed. In the second article we present our progress toward the implementation of our architecture and results on the performance of the secure VC system, along with a discussion of upcoming research challenges and our related current results.
security of ad hoc and sensor networks | 2007
Levente Buttyán; Tamás Holczer; István Vajda
The promise of vehicular communications is to make road traffic safer and more efficient. However, besides the expected benefits, vehicular communications also introduce some privacy risk by making it easier to track the physical location of vehicles. One approach to solve this problem is that the vehicles use pseudonyms that they change with some frequency. In this paper, we study the effectiveness of this approach. We define a model based on the concept of the mix zone, characterize the tracking strategy of the adversary in this model, and introduce a metric to quantify the level of privacy enjoyed by the vehicles. We also report on the results of an extensive simulation where we used our model to determine the level of privacy achieved in realistic scenarios. In particular, in our simulation, we used a rather complex road map, generated traffic with realistic parameters, and varied the strength of the adversary by varying the number of her monitoring points. Our simulation results provide detailed information about the relationship between the strength of the adversary and the level of privacy achieved by changing pseudonyms.
vehicular networking conference | 2009
Levente Buttyán; Tamás Holczer; André Weimerskirch; William Whyte
Untraceability of vehicles is an important requirement in future vehicle communications systems. Unfortunately, heartbeat messages used by many safety applications provide a constant stream of location data, and without any protection measures, they make tracking of vehicles easy even for a passive eavesdropper. One commonly known solution is to transmit heartbeats under pseudonyms that are changed regularly in order to obfuscate the trajectory of vehicles. However, this approach is effective only if some silent period is kept during the pseudonym change and several vehicles change their pseudonyms nearly at the same time and at the same location. Unlike previous works that proposed explicit synchronization between a group of vehicles and/or required pseudonym change in a designated physical area (i.e., a static mix zone), we propose a much simpler approach that does not need any explicit cooperation between vehicles and any infrastructure support. Our basic idea is that vehicles should not transmit heartbeat messages when their speed drops below a given threshold, say 30 km/h, and they should change pseudonym during each such silent period. This ensures that vehicles stopping at traffic lights or moving slowly in a traffic jam will all refrain from transmitting heartbeats and change their pseudonyms nearly at the same time and location. Thus, our scheme ensures both silent periods and synchronized pseudonym change in time and space, but it does so in an implicit way. We also argue that the risk of a fatal accident at a slow speed is low, and therefore, our scheme does not seriously impact safety-of-life. In addition, refraining from sending heartbeat messages when moving at low speed also relieves vehicles of the burden of verifying a potentially large amount of digital signatures, and thus, makes it possible to implement vehicle communications with less expensive equipments.
privacy enhancing technologies | 2006
Levente Buttyán; Tamás Holczer; István Vajda
Key-tree based private authentication has been proposed by Molnar and Wagner as a neat way to efficiently solve the problem of privacy preserving authentication based on symmetric key cryptography. However, in the key-tree based approach, the level of privacy provided by the system to its members may decrease considerably if some members are compromised. In this paper, we analyze this problem, and show that careful design of the tree can help to minimize this loss of privacy. First, we introduce a benchmark metric for measuring the resistance of the system to a single compromised member. This metric is based on the well-known concept of anonymity sets. Then, we show how the parameters of the key-tree should be chosen in order to maximize the systems resistance to single member compromise under some constraints on the authentication delay. In the general case, when any member can be compromised, we give a lower bound on the level of privacy provided by the system. We also present some simulation results that show that this lower bound is quite sharp. The results of this paper can be directly used by system designers to construct optimal key-trees in practice; indeed, we consider this as the main contribution of our work.
world of wireless mobile and multimedia networks | 2007
Gildas Avoine; Levente Buttyant; Tamás Holczer; István Vajda
We propose a novel authentication scheme that ensures privacy of the provers. Our scheme is based on symmetric-key cryptography, and therefore, it is well-suited to resource constrained applications in large scale environments. A typical example for such an application is an RFID system, where the provers are low-cost RFID tags, and the number of the tags can potentially be very large. We analyze the proposed scheme and show that it is superior to the well-known key-tree based approach for private authentication both in terms of privacy and efficiency.
Computer Networks | 2012
Péter Schaffer; Károly Farkas; Ádám Horváth; Tamás Holczer; Levente Buttyán
In the past few years, research interest has been increased towards wireless sensor networks (WSNs) and their application in both the military and civil domains. To support scalability in WSNs and increase network lifetime, nodes are often grouped into disjoint clusters. However, secure and reliable clustering, which is critical in WSNs deployed in hostile environments, has gained modest attention so far or has been limited only to fault tolerance. In this paper, we review the state-of-the-art of clustering protocols in WSNs with special emphasis on security and reliability issues. First, we define a taxonomy of security and reliability for cluster head election and clustering in WSNs. Then, we describe and analyze the most relevant secure and reliable clustering protocols. Finally, we propose countermeasures against typical attacks and show how they improve the discussed protocols.
mobile adhoc and sensor systems | 2009
Levente Buttyán; Tamás Holczer
Clustering is a useful mechanism in wireless sensor networks that helps to cope with scalability problems and, if combined with in-network data aggregation, may increase the energy efficiency of the network. At the same time, by assigning a special role to the cluster head nodes, clustering makes the network more vulnerable to attacks. In particular, disabling a cluster head by physical destruction or jamming may render the entire cluster inoperable temporarily until the problem is detected and a new cluster head is elected. Hence, the cluster head nodes may be attractive targets of attacks, and one would like to make it difficult for an adversary to identify them. The adversary can try to identify the cluster head nodes in various ways, including the observation of the cluster head election process itself and the analysis of the traffic patterns after the termination of the cluster head election. In this paper, we focus on the former problem, which we call the private cluster head election problem. This problem has been neglected so far, and as a consequence, existing cluster head election protocols leak too much information making the identification of the elected cluster head nodes easy even for a passive external observer. We propose the first private cluster head election protocol for wireless sensor networks that is designed to hide the identity of the elected cluster head nodes from an adversary that can observe the execution of the protocol.
security of ad hoc and sensor networks | 2005
Levente Buttyán; Tamás Holczer; Péter Schaffer
Sensor networks are large scale networks consisting of several nodes and some base stations. The nodes are monitoring the environment and send their measurement data towards the base stations possibly via multiple hops. Since the nodes are often battery powered, an important design criterion for sensor networks is the maximization of their lifetime. In this paper, we consider multi-domain sensor networks, by which we mean a set of sensor networks that co-exist at the same physical location but run by different authorities. In this setting, the lifetime of all networks can be increased if the nodes cooperate and also forward packets originating from foreign domains. There is a risk, however, that a selfish network takes advantage of the cooperativeness of the other networks and exploits them. We study this problem in a game theoretic setting, and show that, in most cases, there is a Nash equilibrium in the system, in which at least one of the strategies is cooperative, even without introducing any external incentives (e.g., payments).
world of wireless mobile and multimedia networks | 2012
Levente Buttyán; Tamás Holczer
In this paper, we study the problem of traffic analysis attacks in wireless body area sensor networks. When these networks are used in health-care for remote patient monitoring, traffic analysis can reveal the type of medical sensors mounted on the patient, and this information may be used to infer the patients health problems. We show that simple signal processing methods can be used effectively for performing traffic analysis attacks and identifying the sensor types in a rather weak adversary model. We then investigate possible traffic obfuscation mechanisms aiming at hiding the regular patterns in the observable wireless traffic. Among the investigated countermeasures, traffic shaping, a mechanism that introduces carefully chosen delays for message transmissions, appears to be the best choice, as it achieves close to optimal protection and incurs no overhead.
International Workshop on Smart Grid Security | 2014
Dániel István Buza; Ferenc Juhász; György Miru; Mark Felegyhazi; Tamás Holczer
Smart grids consist of suppliers, consumers, and other parts. The main suppliers are normally supervised by industrial control systems. These systems rely on programmable logic controllers (PLCs) to control industrial processes and communicate with the supervisory system. Until recently, industrial operators relied on the assumption that these PLCs are isolated from the online world and hence cannot be the target of attacks. Recent events, such as the infamous Stuxnet attack [15] directed the attention of the security and control system community to the vulnerabilities of control system elements, such as PLCs. In this paper, we design and implement the Crysys PLC honeypot (CryPLH) system to detect targeted attacks against industrial control systems. This PLC honeypot can be implemented as part of a larger security monitoring system. Our honeypot implementation improves upon existing solutions in several aspects: most importantly in level of interaction and ease of configuration. Results of an evaluation show that our honeypot is largely indistinguishable from a real device from the attacker’s perspective. As a collateral of our analysis, we were able to identify some security issues in the real PLC device we tested and implemented specific firewall rules to protect the device from targeted attacks.