Tamás Micsik
Semmelweis University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tamás Micsik.
Diagnostic Pathology | 2011
László Krecsák; Tamás Micsik; Gábor Kiszler; Tibor Krenács; Dániel Szabó; Viktor Zoltan Jonas; Gergely Császár; László Czúni; Péter Gurzó; Levente Ficsor; Béla Molnár
BackgroundThe immunohistochemical detection of estrogen (ER) and progesterone (PR) receptors in breast cancer is routinely used for prognostic and predictive testing. Whole slide digitalization supported by dedicated software tools allows quantization of the image objects (e.g. cell membrane, nuclei) and an unbiased analysis of immunostaining results. Validation studies of image analysis applications for the detection of ER and PR in breast cancer specimens provided strong concordance between the pathologists manual assessment of slides and scoring performed using different software applications.MethodsThe effectiveness of two connected semi-automated image analysis software (NuclearQuant v. 1.13 application for Pannoramic™ Viewer v. 1.14) for determination of ER and PR status in formalin-fixed paraffin embedded breast cancer specimens immunostained with the automated Leica Bond Max system was studied. First the detection algorithm was calibrated to the scores provided an independent assessors (pathologist), using selected areas from 38 small digital slides (created from 16 cases) containing a mean number of 195 cells. Each cell was manually marked and scored according to the Allred-system combining frequency and intensity scores. The performance of the calibrated algorithm was tested on 16 cases (14 invasive ductal carcinoma, 2 invasive lobular carcinoma) against the pathologists manual scoring of digital slides.ResultsThe detection was calibrated to 87 percent object detection agreement and almost perfect Total Score agreement (Cohens kappa 0.859, quadratic weighted kappa 0.986) from slight or moderate agreement at the start of the study, using the un-calibrated algorithm. The performance of the application was tested against the pathologists manual scoring of digital slides on 53 regions of interest of 16 ER and PR slides covering all positivity ranges, and the quadratic weighted kappa provided almost perfect agreement (κ = 0.981) among the two scoring schemes.ConclusionsNuclearQuant v. 1.13 application for Pannoramic™ Viewer v. 1.14 software application proved to be a reliable image analysis tool for pathologists testing ER and PR status in breast cancer.
Pathology & Oncology Research | 2012
Kristóf Árvai; Katalin Nagy; Helga Barti-Juhasz; István Peták; Tibor Krenács; Tamás Micsik; Gyula Végső; Ferenc Perner; Béla Szende
The objective of the study was to examine proliferation and apoptosis associated gene expression in the whole sequence parathyroid lesions to reveal specific features of carcinoma. This study was based on surgically removed parathyroid tissues, gene expression analysis was performed both at gene and protein level. First, mRNA isolation was performed from deep-frozen tissue samples, and further apoptosis pathway-specific cDNA macroarray analysis was carried out. The results were validated with real-time PCR. Subsequently, protein expression was analyzed with immunhistochemistry on Tissue Micro Array multi-blocks derived from several paraffin-embedded samples. cDNA macroarrays revealed elevated expression of both pro-apoptotic (FAS receptor, TRAIL ligand, CASPASE8, and −4) and anti-apoptotic (cIAP1, APOLLON) genes in benign proliferative lesions compared to that in normal gland. TMA studies showed overexpression of KI67, P53, SURVIVIN and APOLLON protein and failure of expression of P27, BCL2, BAX, CHROMOGRANIN-A, SYNAPTOPHYSIN, CYCLIND1, FLIP, TRAIL, CK8, CK18, CK19 in parathyroid carcinoma was detected. These alterations in gene expression of the investigated products could be used in differentiation between beningn and malignant proliferative processes of the parathyroid gland. Authors conclude that a series of alterations in gene expression such as overexpression of APOLLON, P53, KI67 and suppression of P27, BCL2, BAX lead to uncontrolled cell proliferation, but still not leading to increased apoptotic activity in parathyroid carcinoma.
Journal of Clinical Pathology | 2017
Tamás Béla Sticz; Anna Molnár; Ágnes Márk; Melinda Hajdu; Noémi Nagy; Gyula Végső; Tamás Micsik; László Kopper; Anna Sebestyén
Aims Tumour heterogeneity and altered activation of signalling pathways play important roles in therapy resistance. The PI3K/Akt/mTOR signalling network is a well-known regulator of several functions that contribute to tumour growth. mTOR exists in two functionally different multiprotein complexes. We aimed to determine mTOR activity-related proteins in clinically followed, conventionally treated colon carcinomas and to analyse the correlation between clinical data and mTORC1 and mTORC2 activity. Methods Immunohistochemistry was performed with different antibodies on tissue microarray blocks from 103 patients with human colorectal adenocarcinoma. mTORC1- and mTORC2-related activity were scored on different stainings including analysis of the expression of Raptor and Rictor—specific elements of mTORC1 and C2 complexes. The staining scores and clinical/survival data were compared and analysed. Results Detailed characterisation showed stage and grade independent high mTOR activity in 74% of cases. High mTOR activity was present in mTORC1 and/or mTORC2 complexes; >60% of cases had mTORC2-related high mTOR activity. Based on our analysis, high mTOR activity and Rictor overexpression could be markers of a bad prognosis. Combined phosphoprotein and Rictor/Raptor expression evaluation revealed even stronger statistical correlation with prognosis. Conclusions The presented staining panel could be appropriate and highly recommended for the accurate specification of mTORC1 and C2 activity of tumour tissues. This could help in the selection of mTOR inhibitors and can provide information about prognosis, which may guide decisions about the intensity of therapy.
Cytometry Part A | 2017
Róbert Paulik; Tamás Micsik; Gábor Kiszler; Péter Kaszál; János Székely; Norbert Paulik; Eszter Varhalmi; Viktória Prémusz; Tibor Krenács; Béla Molnár
Nuclear estrogen receptor (ER), progesterone receptor (PR) and Ki‐67 protein positive tumor cell fractions are semiquantitatively assessed in breast cancer for prognostic and predictive purposes. These biomarkers are usually revealed using immunoperoxidase methods resulting in diverse signal intensity and frequent inhomogeneity in tumor cell nuclei, which are routinely scored and interpreted by a pathologist during conventional light‐microscopic examination. In the last decade digital pathology‐based whole slide scanning and image analysis algorithms have shown tremendous development to support pathologists in this diagnostic process, which can directly influence patient selection for targeted‐ and chemotherapy. We have developed an image analysis algorithm optimized for whole slide quantification of nuclear immunostaining signals of ER, PR, and Ki‐67 proteins in breast cancers. In this study, we tested the consistency and reliability of this system both in a series of brightfield and DAPI stained fluorescent samples. Our method allows the separation of overlapping cells and signals, reliable detection of vesicular nuclei and background compensation, especially in FISH stained slides. Detection accuracy and the processing speeds were validated in routinely immunostained breast cancer samples of varying reaction intensities and image qualities. Our technique supported automated nuclear signal detection with excellent efficacy: Precision Rate/Positive Predictive Value was 90.23 ± 4.29%, while Recall Rate/Sensitivity was 88.23 ± 4.84%. These factors and average counting speed of our algorithm were compared with two other open source applications (QuPath and CellProfiler) and resulted in 6–7% higher Recall Rate, while 4‐ to 30‐fold higher processing speed. In conclusion, our image analysis algorithm can reliably detect and count nuclear signals in digital whole slides or any selected large areas i.e. hot spots, thus can support pathologists in assessing clinically important nuclear biomarkers with less intra‐ and interlaboratory bias inherent of empirical scoring.
Pathology Research and Practice | 2012
Yi Che Changchien; Irén Haltrich; Tamás Micsik; Eszter Kiss; László Fónyad; Gergo Papp; Zoltán Sápi
Gonadoblastomas are unusual neoplasias that frequently appear in the dysgenetic gonads of women with chromosome Y anomaly. We present two cases of gonadoblastoma associated with complete gonadal dysgenesis and Turner syndrome, respectively, with dysgerminoma overgrowth found in one case. We were interested in the DNA ploidy, the presence of Y chromosome DNA sequence and the status of chromosome 12p arm among the tumor cells. We performed cytophotometry to analyze the DNA content and fluorescence in situ hybridization (FISH) to identify the Y chromosome and the isochromosome 12p within the tumor cells. The cytophotometric result showed diploid DNA content in gonadoblastoma, whereas dysgerminoma revealed aneuploid DNA. The FISH result revealed Y chromosome DNA sequence within gonadoblastoma and dysgerminoma. Isochromosome 12p was identified in dysgerminoma, but not in gonadoblastoma. We conclude that gonadoblastoma and dysgerminoma have a strong association with the Y chromosome, and dysgerminoma overgrowth is due to further chromosomal aberrations, such as isochromosome 12p. Histological, immunohistocheimcal and molecular studies should render the correct diagnosis. Identifying dysgerminoma overgrowth is crucial since it is associated with adverse prognosis and requires additional therapy.
Journal of Cancer | 2017
Bálint Péterfia; Alexandra Kalmár; Árpád V. Patai; István Csabai; András Bodor; Tamás Micsik; Barnabás Wichmann; Krisztina Egedi; Péter Hollósi; Ilona Kovalszky; Zsolt Tulassay; Béla Molnár
Background: To support cancer therapy, development of low cost library preparation techniques for targeted next generation sequencing (NGS) is needed. In this study we designed and tested a PCR-based library preparation panel with limited target area for sequencing the top 12 somatic mutation hot spots in colorectal cancer on the GS Junior instrument. Materials and Methods: A multiplex PCR panel was designed to amplify regions of mutation hot spots in 12 selected genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53). Amplicons were sequenced on a GS Junior instrument using ligated and barcoded adaptors. Eight samples were sequenced in a single run. Colonic DNA samples (8 normal mucosa; 33 adenomas; 17 adenocarcinomas) as well as HT-29 and Caco-2 cell lines with known mutation profiles were analyzed. Variants found by the panel on APC, BRAF, KRAS and NRAS genes were validated by conventional sequencing. Results: In total, 34 kinds of mutations were detected including two novel mutations (FBXW7 c.1740:C>G and SMAD4 c.413C>G) that have not been recorded in mutation databases, and one potential germline mutation (APC). The most frequently mutated genes were APC, TP53 and KRAS with 30%, 15% and 21% frequencies in adenomas and 29%, 53% and 29% frequencies in carcinomas, respectively. In cell lines, all the expected mutations were detected except for one located in a homopolymer region. According to re-sequencing results sensitivity and specificity was 100% and 92% respectively. Conclusions: Our NGS-based screening panel denotes a promising step towards low cost colorectal cancer genotyping on the GS Junior instrument. Despite the relatively low coverage, we discovered two novel mutations and obtained mutation frequencies comparable to literature data. Additionally, as an advantage, this panel requires less template DNA than sequence capture colon cancer panels currently available for the GS Junior instrument.
Pathology & Oncology Research | 2015
Tamás Micsik; Gábor Kiszler; Dániel Szabó; László Krecsák; Csaba Hegedűs; Krenács Tibor; Béla Molnár
HER2-positive breast cancers usually benefit from anti-HER2 therapy, thus, HER2 evaluation became inevitable for patient selection. HER2-negative (IHC 0, 1+) and strong positive (IHC 3+) cases can easily be interpreted with immunohistochemistry, but equivocal (IHC 2+) cases require further analysis of HER2 gene amplification using in situ hybridization. Our study aimed to validate digital pathology and automated image analysis for unbiased evaluation of HER2 immunostains. We developed an image segmentation algorithm for analyzing HER2-immunostaining (4B5 clone) in tissue microarrays of breast cancers. Two pathologists assessed 309 microscopic regions of at least 100 tumor cells each—representing all HER2 positivity groups—according to international guidelines either semi-quantitatively or by using the MembraneQuant software. Scoring results were statistically correlated with each other and with FISH data, and almost perfect agreement was found (inter-method Cohen’s kappa = 0.872, Spearman-rho = 0.928). When clinical relevance (scoring disagreement that may define erroneous treatment selection) was examined high agreement was found (quadratic weighted kappa = 0.967). Image analysis classified cases with excellent correlation with visual evaluation, therefore, MembraneQuant software proved to be a reliable tool for assessing HER2 immunoreactions and supporting better targeting anti-HER2 therapy. As digital analysis of immunomorphological markers allows permanent archiving, standardization and accurate reviewing of results, it supports quality assurance initiatives in diagnostic pathology—especially of equivocal cases which are hard to interpret.
Diagnostic Pathology | 2015
Tamás Micsik; András Lőrincz; Tamás Mersich; Zsolt Baranyai; István Besznyák; Kristóf Dede; Attila Zaránd; Ferenc Jakab; László Krecsák Szöllösi; György Kéri; Richard Schwab; István Peták
BackgroundThe ATP-Binding Cassette (ABC)-transporter MultiDrug Resistance Protein 1 (MDR1) and Multidrug Resistance Related Protein 1 (MRP1) are expressed on the surface of enterocytes, which has led to the belief that these high capacity transporters are responsible for modulating chemosensitvity of colorectal cancer. Several immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) studies have provided controversial results in regards to the expression levels of these two ABC-transporters in colorectal cancer. Our study was designed to determine the yet uninvestigated functional activity of MDR1 and MRP1 transporters in normal human enterocytes compared to colorectal cancer cells from surgical biopsies.Methods100 colorectal cancer and 28 adjacent healthy mucosa samples were obtained by intraoperative surgical sampling. Activity of MDR1 and MRP1 of viable epithelial and cancer cells were determined separately with the modified calcein-assay for multidrug resistance activity and sufficient data of 73 cancer and 11 healthy mucosa was analyzed statistically.ResultsSignificantly decreased mean MDR1 activity was found in primary colorectal cancer samples compared to normal mucosa, while mean MRP1 activity showed no significant change. Functional activity was not affected by gender, age, stage or grade and localization of the tumor.ConclusionWe found lower MDR activity in cancer cells versus adjacent, apparently, healthy control tissue, thus, contrary to general belief, MDR activity seems not to play a major role in primary drug resistance, but might rather explain preferential/selective activity of Irinotecan and/or Oxaliplatin. Still, this picture might be more complex since chemotherapy by itself might alter MDR activity, and furthermore, today limited data is available about MDR activity of cancer stem cells in colorectal cancers.Virtual slidesThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1675739129145824
Diagnostic Pathology | 2015
Tamás Micsik; András Lőrincz; János Gál; Richárd Schwab; István Peták
BackgroundRheumatoid Arthritis is a chronic disease leading to decreased quality of life with a rather variable response rate to Disease Modifying Anti Rheumatic Drugs. Methotrexate (MTX) is the gold standard therapy in Rheumatoid Arthritis. The Multidrug resistance Related Protein and Multi Drug Resistance protein 1, also called P-glycoprotein-170 transporters can alter the intracellular concentration of different drugs. Methotrexate is an MRP1 substrate and thus the functional activity of MRP1 might have a clinical impact on the efficiency of the Methotrexate-therapy in Rheumatoid Arthritis.MethodsWe have compared the functional Multidrug Activity Factors (MAF) of the MDR1 and MRP1 transporters of Peripheral Blood Leukocytes of 59 Rheumatoid Arthritis patients with various response rate to MTX-therapy (MTX-responder, MTX-resistant and MTX-intolerant RA-groups) and 47 non-RA controls in six different leukocyte subpopulations (neutrophil leukocytes, monocytes, lymphocytes, CD4+, CD8+ and CD19+ cells). There was a decreased MAF of RA patients compared to non- Rheumatoid Arthritis patients and healthy controls in the leukocyte subpopulations. There was a significant difference between the MAF values of the MTX-responder and MTX intolerant groups. But we have not found significant differences between the MAF values of the MTX-responder and MTX-resistant Rheumatoid Arthritis -groups.ResultsOur results suggest that MDR1 and MRP1 functional activity does not seem to affect the response rate to MTX-therapy of Rheumatoid Arthritis-patients, but it might be useful in predicting MTX-side effects. We have demonstrated the decreased functional MDR-activity on almost 60 Rheumatoid Arthritis patients, which can be interpreted as a sign of the immune-suppressive effect of the MTX-treatment.
Orvosi Hetilap | 2014
Emese Mihály; Tamás Micsik; Márk Juhász; László Herszényi; Zsolt Tulassay
Alterations of the stomach mucosa in response to different adverse effects result in various morphological and clinical symptoms. Gastric mucosa alterations can be classified on the bases of diverse viewpoints. It makes this overview difficult, that identical toxic effects may cause different mucosal changes and different toxic agents may produce similar mucosal appearance. The more accurate understanding of the pathological processes which develop in the stomach mucosa needs reconsideration. The authors make an attempt to define gastritis and gastropathy in order to classify and present their features. Gastritis is a histological definition indicating mucosal inflammation. Acute gastritis is caused by infections. The two most important forms of chronic gastritis are metaplastic atrophic gastritis with an autoimmune origin and Helicobacter pylori inflammation. Gastropathy is the name of different structural alterations of the mucosa. Its most important feature is the paucity of inflammatory signs. Gastropathies can be divided into 4 categories based on the nature of the underlying pathological effect, on its morphological appearance and the way of the development. Differential diagnosis is an important pathological and clinical task because different treatment methods and prognosis.