Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamás Rőszer is active.

Publication


Featured researches published by Tamás Rőszer.


Journal of Immunology | 2011

Autoimmune Kidney Disease and Impaired Engulfment of Apoptotic Cells in Mice with Macrophage Peroxisome Proliferator-Activated Receptor γ or Retinoid X Receptor α Deficiency

Tamás Rőszer; María P. Menéndez-Gutiérrez; Martina I. Lefterova; Daniel Alameda; Vanessa Núñez; Mitchell A. Lazar; Thierry Fischer; Mercedes Ricote

Autoimmune glomerulonephritis is a common manifestation of systemic lupus erythematosus (SLE). In this study, we show that mice lacking macrophage expression of the heterodimeric nuclear receptors PPARγ or RXRα develop glomerulonephritis and autoantibodies to nuclear Ags, resembling the nephritis seen in SLE. These mice show deficiencies in phagocytosis and clearance of apoptotic cells, and they are unable to acquire an anti-inflammatory phenotype upon feeding of apoptotic cells, which is critical for the maintenance of self-tolerance. These results demonstrate that stimulation of PPARγ and RXRα in macrophages facilitates apoptotic cell engulfment, and they provide a potential strategy to avoid autoimmunity against dying cells and to attenuate SLE.


Biochimica et Biophysica Acta | 2010

Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome

Xavier Prieur; Tamás Rőszer; Mercedes Ricote

Accumulation of lipid metabolites within non-adipose tissues can induce chronic inflammation by promoting macrophage infiltration and activation. Oxidized and glycated lipoproteins, free fatty acids, free cholesterol, triacylglycerols, diacylglycerols and ceramides have long been known to induce cellular dysfunction through their pro-inflammatory and pro-apoptotic properties. Emerging evidence suggests that macrophage activation by lipid metabolites and further modulation by lipid signaling represents a common pathogenic mechanism underlying lipotoxicity in atherosclerosis, obesity-associated insulin resistance and inflammatory diseases related to metabolic syndrome such as liver steatosis and chronic kidney disease. In this review, we discuss the latest discoveries that support the role of lipids in modulating the macrophage phenotype in different metabolic diseases. We describe the common mechanisms by which lipid derivatives, through modulation of macrophage function, promote plaque instability in the arterial wall, impair insulin responsiveness and contribute to inflammatory liver, muscle and kidney disease. We discuss the molecular mechanism of lipid activation of pro-inflammatory pathways (JNK, NFkappaB) and the key roles played by the PPAR and LXR nuclear receptors-lipid sensors that link lipid metabolism and inflammation.


Mediators of Inflammation | 2010

Inflammatory Mediators and Insulin Resistance in Obesity: Role of Nuclear Receptor Signaling in Macrophages

Lucía Fuentes; Tamás Rőszer; Mercedes Ricote

Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR). The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs) have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs), which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.


Trends in Endocrinology and Metabolism | 2013

Retinoid X receptors in macrophage biology.

Tamás Rőszer; María P. Menéndez-Gutiérrez; Marta Cedenilla; Mercedes Ricote

Retinoid X receptors (RXRs) form a distinct and unique subclass within the nuclear receptor (NR) superfamily of ligand-dependent transcription factors. RXRs regulate a plethora of genetic programs, including cell differentiation, the immune response, and lipid and glucose metabolism. Recent advances reveal that RXRs are important regulators of macrophages, key players in inflammatory and metabolic disorders. This review outlines the versatility of RXR action in the control of macrophage gene transcription through its heterodimerization with other NRs or through RXR homodimerization. We also highlight the potential of RXR-controlled transcriptional programs as targets for the treatment of pathologies associated with altered macrophage function, such as atherosclerosis, insulin resistance, autoimmunity, and neurodegeneration.


Inflammation Research | 2011

Inflammation as death or life signal in diabetic fracture healing

Tamás Rőszer

Increased apoptosis of chondrocytes and osteoblasts and prolonged survival of osteoclasts lead to early destruction of callus tissue and impair bone remodeling in fracture healing of diabetic patients. Diabetes is accompanied by an increased inflammatory state, reactive oxgen species (ROS) generation and accumulation of advanced glycation end products (AGEs), a heterogenous group of toxic metabolites that can induce inflammation. Prolonged hyperglycemia and insulin resistance correlate with increased apoptosis rate and, accordingly, the proapoptotic role of several inflammatory mediators, ROS and AGEs has been also documented. In this review we summarize the most recent reports supporting the idea that inflammatory signaling increases chondrocyte and osteoblast death and prolongs osteoclast survival, resulting in impaired bone regeneration in diabetes. Antagonising inflammatory signal pathways and solution of inflammation may deserve greater attention in the management of diabetic fracture healing.


Ppar Research | 2010

PPARs in the Renal Regulation of Systemic Blood Pressure

Tamás Rőszer; Mercedes Ricote

Recent research has revealed roles for the peroxisome proliferator activated receptor (PPAR) family of transcription factors in blood pressure regulation, expanding the possible therapeutic use of PPAR ligands. PPARα and PPARγ modulate the renin-angiotensin-aldosterone system (RAAS), a major regulator of systemic blood pressure and interstitial fluid volume by transcriptional control of renin, angiotensinogen, angiotensin converting enzyme (ACE) and angiotensin II receptor 1 (AT-R1). Blockade of RAAS is an important therapeutic target in hypertension management and attenuates microvascular damage, glomerular inflammation and left ventricular hypertrophy in hypertensive patients and also show antidiabetic effects. The mechanisms underlying the benefits of RAAS inhibition appear to involve PPARγ-regulated pathways. This review summarizes current knowledge on the role of PPARs in the transcriptional control of the RAAS and the possible use of PPAR ligands in the treatment of RAAS dependent hypertension.


FEBS Letters | 2008

Nuclear receptors in macrophages: A link between metabolism and inflammation

Attila Szanto; Tamás Rőszer

In the past decade much effort has been made to understand the mechanisms how lipids are handled by macrophages and how inflammation could promote the atherogenic process. Here, we also provide an overview of these two fields.


Journal of Clinical Investigation | 2015

Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling

María P. Menéndez-Gutiérrez; Tamás Rőszer; Lucía Fuentes; Vanessa Núñez; Amelia Escolano; Juan Miguel Redondo; Nora De Clerck; Daniel Metzger; Annabel F. Valledor; Mercedes Ricote

Osteoclasts are bone-resorbing cells that are important for maintenance of bone remodeling and mineral homeostasis. Regulation of osteoclast differentiation and activity is important for the pathogenesis and treatment of diseases associated with bone loss. Here, we demonstrate that retinoid X receptors (RXRs) are key elements of the transcriptional program of differentiating osteoclasts. Loss of RXR function in hematopoietic cells resulted in formation of giant, nonresorbing osteoclasts and increased bone mass in male mice and protected female mice from bone loss following ovariectomy, which induces osteoporosis in WT females. The increase in bone mass associated with RXR deficiency was due to lack of expression of the RXR-dependent transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MAFB) in osteoclast progenitors. Evaluation of osteoclast progenitor cells revealed that RXR homodimers directly target and bind to the Mafb promoter, and this interaction is required for proper osteoclast proliferation, differentiation, and activity. Pharmacological activation of RXRs inhibited osteoclast differentiation due to the formation of RXR/liver X receptor (LXR) heterodimers, which induced expression of sterol regulatory element binding protein-1c (SREBP-1c), resulting in indirect MAFB upregulation. Our study reveals that RXR signaling mediates bone homeostasis and suggests that RXRs have potential as targets for the treatment of bone pathologies such as osteoporosis.


Cell and Tissue Research | 2014

Leptin receptor deficient diabetic (db/db) mice are compromised in postnatal bone regeneration

Tamás Rőszer; Tamás Józsa; Éva Kiss-Tóth; De Clerck N; Balogh L

Increased fragility fracture risk with improper healing is a frequent and severe complication of insulin resistance (IR). The mechanisms impairing bone health in IR are still not fully appreciated, which gives importance to studies on bone pathologies in animal models of diabetes. Mice deficient in leptin signaling are widely used models of IR and its comorbidities. Leptin was first recognized as a hormone, regulating appetite and energy balance; however, recent studies have expanded its role showing that leptin is a link between insulin-dependent metabolism and bone homeostasis. In the light of these findings, it is intriguing to consider the role of leptin resistance in bone regeneration. In this study, we show that obese diabetic mice lacking leptin receptor (db/db) are deficient in postnatal regenerative osteogenesis. We apply an ectopic osteogenesis and a fracture healing model, both showing that db/db mice display compromised bone acquisition and regeneration capacity. The underlying mechanisms include delayed periosteal mesenchymatic osteogenesis, premature apoptosis of the cartilage callus and impaired microvascular invasion of the healing tissue. Our study supports the use of the db/db mouse as a model of IR associated bone-healing deficits and can aid further studies of mesenchymatic cell homing and differentiation, microvascular invasion, cartilage to bone transition and callus remodeling in diabetic fracture healing.


Journal of Neurocytology | 2002

Development of the nitric oxide/cGMP system in the embryonic and juvenile pond snail, Lymnaea stagnalis L. A comparative in situ hybridization, histochemical and immunohistochemical study.

Zoltán Serfőző; Zoltán Veréb; Tamás Rőszer; György Kemenes; Károly Elekes

Recent studies have indicated that nitric oxide (NO)-induced cGMP synthesis is involved in different steps of neurogenesis in invertebrates. The development of putative NO synthetising elements was described earlier in the embryonic and juvenile pond snail, Lymnaea stagnalis, applying NADPH-diaphorase histochemistry (Serfőző et al., 1998). In the present study, we examined the distribution of NO synthase (NOS) during Lymnaea development by in situ hybridization for Lymnaea-NOS mRNA, histochemical, and immunohistochemical techniques for the NOS and NO-stimulated cGMP. Peripheral fibers projecting to the CNS and terminating in the ganglionic neuropils showed NOS immunoreactivity from 85% of embryonic development. At the same time, a fine dot-like, immunostaining indicated the presence of cGMP in the neuropil area. In the CNS, Lymnaea-NOS mRNA positive, as well as NOS and cGMP immunoreactive perikarya were detected first during postembryonic development; their number significantly increased from P3 juvenile stage. Some of the cell groups in the CNS containing NOS immunoreactive material also displayed Lymnaea-NOS mRNA hybridization signal and were cGMP-positive. However, in the subesophageal ganglia, the distribution of Lymnaea-NOS mRNA positive cell groups did not correspond to that of the NOS immunoreactive cells. Neurons revealing transient NOS and cGMP immunoreactivity, respectively, could also be detected in this part of the CNS. In most of the ganglia the number of Lymnaea-NOS mRNA containing and cGMP immunopositive neurons, respectively, exceeded that of the NOS immunoreactive cells from P4 juvenile stage. The localization of NADPH-diaphorase reaction also correlated well with that of the NOS immunoreactivity in the developing CNS. At the periphery, colocalization of Lymnaea-NOS mRNA signal, NOS and cGMP immunoreactivities were observed in the epithelial cells of the esophagus and mantle after hatching. The findings suggest the functional maturity of the NO/cGMP signal transduction pathway at both central and peripheral levels during the development of the snail, Lymnaea stagnalis. The differences in the localization of Lymnaea-NOS mRNA labeling and NOS immunoreactivity in the CNS and PNS can be explained by the existence of different NOS isoforms, posttranslational regulation of NOS, and/or some non-specific antibody labeling.

Collaboration


Dive into the Tamás Rőszer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mercedes Ricote

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María P. Menéndez-Gutiérrez

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Gábor Nagy

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar

Zoltán Serfőző

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Vanessa Núñez

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Andrea Nagy

University of Debrecen

View shared research outputs
Researchain Logo
Decentralizing Knowledge