Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tami A. Martino is active.

Publication


Featured researches published by Tami A. Martino.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

CIRCADIAN RHYTHM DISORGANIZATION PRODUCES PROFOUND CARDIOVASCULAR AND RENAL DISEASE IN HAMSTERS

Tami A. Martino; Gavin Y. Oudit; Andrew M. Herzenberg; Nazneen Tata; Margaret M. Koletar; Golam Kabir; Denise D. Belsham; Peter H. Backx; Martin R. Ralph; Michael J. Sole

Sleep deprivation, shift work, and jet lag all disrupt normal biological rhythms and have major impacts on health; however, circadian disorganization has never been shown as a causal risk factor in organ disease. We now demonstrate devastating effects of rhythm disorganization on cardiovascular and renal integrity and that interventions based on circadian principles prevent disease pathology caused by a short-period mutation (tau) of the circadian system in hamsters. The point mutation in the circadian regulatory gene, casein kinase-1epsilon, produces early onset circadian entrainment with fragmented patterns of behavior in +/tau heterozygotes. Animals die at a younger age with cardiomyopathy, extensive fibrosis, and severely impaired contractility; they also have severe renal disease with proteinuria, tubular dilation, and cellular apoptosis. On light cycles appropriate for their genotype (22 h), cyclic behavioral patterns are normalized, cardiorenal phenotype is reversed, and hearts and kidneys show normal structure and function. Moreover, hypertrophy does not develop in animals whose suprachiasmatic nucleus was ablated as young adults. Circadian organization therefore is critical for normal health and longevity, whereas chronic global asynchrony is implicated in the etiology of cardiac and renal disease.


Hypertension | 2007

Disturbed Diurnal Rhythm Alters Gene Expression and Exacerbates Cardiovascular Disease With Rescue by Resynchronization

Tami A. Martino; Nazneen Tata; Denise D. Belsham; Jennifer A. Chalmers; Marty Straume; Paul Lee; Horia Pribiag; Neelam Khaper; Peter Liu; Fayez Dawood; Peter H. Backx; Martin R. Ralph; Michael J. Sole

Day/night rhythms are recognized as important to normal cardiovascular physiology and timing of adverse cardiovascular events; however, their significance in disease has not been determined. We demonstrate that day/night rhythms play a critical role in compensatory remodeling of cardiovascular tissue, and disruption exacerbates disease pathophysiology. We use a murine model of pressure overload cardiac hypertrophy (transverse aortic constriction) in a rhythm-disruptive 20-hour versus 24-hour environment. Echocardiography reveals increased left ventricular end-systolic and -diastolic dimensions and reduced contractility in rhythm-disturbed transverse aortic constriction animals. Furthermore, cardiomyocytes and vascular smooth muscle cells exhibit reduced hypertrophy, despite increased pressure load. Microarray and real-time PCR demonstrate altered gene cycling in transverse aortic constriction myocardium and hypothalamic suprachiasmatic nucleus. With rhythm disturbance, there is a consequent altered cellular clock mechanism (per2 and bmal), whereas key genes in hypertrophic pathways (ANF, BNP, ACE, and collagen) are downregulated paradoxical to the increased pressure. Phenotypic rescue, including reversal/attenuation of abnormal pathology and genes, only occurs when the external rhythm is allowed to correspond with the animals’ innate 24-hour internal rhythm. Our study establishes the importance of diurnal rhythm as a vital determinant in heart disease. Disrupted rhythms contribute to progression of organ dysfunction; restoration of normal diurnal schedules appears to be important for effective treatment of disease.


Nature Medicine | 2000

The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease.

Peter Liu; Karen Aitken; Young-Yun Kong; Opavsky Ma; Tami A. Martino; Fayez Dawood; Wen Wh; Ivona Kozieradzki; Kurt Bachmaier; David Straus; Tak W. Mak; Josef M. Penninger

Infections are thought to be important in the pathogenesis of many heart diseases. Coxsackievirus B3 (CVB3) has been linked to chronic dilated cardiomyopathy, a common cause of progressive heart disease, heart failure and sudden death. We show here that the sarcoma (Src) family kinase Lck (p56lck) is required for efficient CVB3 replication in T-cell lines and for viral replication and persistence in vivo. Whereas infection of wild-type mice with human pathogenic CVB3 caused acute and very severe myocarditis, meningitis, hepatitis, pancreatitis and dilated cardiomyopathy, mice lacking the p56lck gene were completely protected from CVB3-induced acute pathogenicity and chronic heart disease. These data identify a previously unknown function of Src family kinases and indicate that p56lck is the essential host factor that controls the replication and pathogenicity of CVB3.


Journal of Clinical Investigation | 2002

Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis.

Mary Anne Opavsky; Tami A. Martino; Marlene Rabinovitch; Josef M. Penninger; Christopher D. Richardson; Martin Petric; Cathy Trinidad; Lisa Butcher; Janice Chan; Peter Liu

Group B coxsackieviral (CVB) infection commonly causes viral myocarditis. Mice are protected from CVB3 myocarditis by gene-targeted knockout of p56(Lck)(Lck), the Src family kinase (Src) essential for T cell activation. Extracellular signal-regulated kinase 1 and 2 (ERK-1/2) can influence cell function downstream of Lck. Using T cell lines and neonatal cardiac myocytes we investigated the role of ERK-1/2 in CVB3 infection. In Jurkat T cells ERK-1/2 is rapidly activated by CVB3; but, this response is absent in Lck-negative JCaM T cells. Inhibition of ERK-1/2 with UO126 reduced CVB3 titers in Jurkat cells, but not in JCaM cells. In cardiac myocytes CVB3 activation of ERK-1/2 is blocked by the Src inhibitor PP2. In addition, viral production in myocytes is decreased by Src or ERK-1/2 inhibition. In vitro, in both immune and myocardial cells, ERK-1/2 is activated by CVB3 downstream of Lck and other Srcs and is necessary for efficient CVB3 replication. In vivo, following CVB3 infection, ERK-1/2 activation is evident in the myocardium. ERK-1/2 activation is intense in the hearts of myocarditis-susceptible A/J mice. In contrast, significantly less ERK-1/2 activation is found in the hearts of myocarditis-resistant C57BL/6 mice. Therefore, the ERK-1/2 response to CVB3 infection may contribute to differential host susceptibility to viral myocarditis.


Journal of Molecular Medicine | 2004

Day/night rhythms in gene expression of the normal murine heart

Tami A. Martino; Sara Arab; Marty Straume; Denise D. Belsham; Nazneen Tata; Fang Cai; Peter Liu; Maria G. Trivieri; Martin R. Ralph; Michael J. Sole

Molecular circadian oscillators have recently been identified in heart and many other peripheral organs; however, little is known about the physiologic significance of circadian gene cycling in the periphery. While general temporal profiles of gene expression in the heart have been described under constant lighting conditions, patterns under normal day/night conditions may be distinctly different. To understand how gene expression contributes to cardiac function, especially in human beings, it is crucial to examine these patterns in 24-h light and dark environments. High-density oligonucleotide microarrays were used to assess myocardial expression of 12,488 murine genes at 3-h intervals under the normal conditions of light and dark cycling. Variation in genetic activity was considerable, as 1,634 genes (~13% of genes analyzed) exhibited statistically significant changes across the 24-h cycle. Some genes exhibited rhythmic expression, others showed abrupt change at light-to-dark and dark-to-light transitions. Importantly, genes that exhibited significant cycling rhythms mapped to key biological pathways, including for example cardiac cellular growth and remodeling, as well as transcription, translation, mitochondrial respiration, and signaling pathways. Gene expression in the heart is remarkably different in the day versus the night. Some gene cycling may be driven by the central circadian pacemaker, while other changes appear to be responses to light and dark. This has important implications regarding our understanding of how the molecular physiology of the heart is controlled, including temporal patterns of organ growth, renewal, and disease, comparative gene expression, and the most appropriate times for administration of therapy.


Circulation Research | 2009

Molecular Time An Often Overlooked Dimension to Cardiovascular Disease

Tami A. Martino; Michael J. Sole

Diurnal rhythms influence cardiovascular physiology such as heart rate and blood pressure and the incidence of adverse cardiac events such as heart attack and stroke. For example, shift workers and patients with sleep disturbances, such as obstructive sleep apnea, have an increased risk of heart attack, stroke, and sudden death. Diurnal variation is also evident at the molecular level, as gene expression in the heart and blood vessels is remarkably different in the day as compared to the night. Much of the evidence presented here indicates that growth and renewal (structural remodeling) are highly dependent on processes that occur during the subjective night. Myocardial metabolism is also dynamic with substrate preference also differing day from night. The risk/benefit ratio of some therapeutic strategies and the appearance of biomarkers also vary across the 24-hour diurnal cycle. Synchrony between external and internal diurnal rhythms and harmony among the molecular rhythms within the cell is essential for normal organ biology. Cell physiology is 4 dimensional; the substrate and enzymatic components of a given metabolic pathway must be present not only in the right compartmental space within the cell but also at the right time. As a corollary, we show disrupting this integral relationship has devastating effects on cardiovascular, renal and possibly other organ systems. Harmony between our biology and our environment is vital to good health.


Journal of Biological Rhythms | 2014

Cardiomyocyte-Specific BMAL1 Plays Critical Roles in Metabolism, Signaling, and Maintenance of Contractile Function of the Heart

Martin E. Young; Rachel A. Brewer; Rodrigo A. Peliciari-Garcia; Helen E. Collins; Lan He; Tana L. Birky; Bradley W. Peden; Emily G. Thompson; Billy Joe Ammons; Molly S. Bray; John C. Chatham; Adam R. Wende; Qinglin Yang; Chi Wing Chow; Tami A. Martino; Karen L. Gamble

Circadian clocks are cell autonomous, transcriptionally based, molecular mechanisms that confer the selective advantage of anticipation, enabling cells/organs to respond to environmental factors in a temporally appropriate manner. Critical to circadian clock function are 2 transcription factors, CLOCK and BMAL1. The purpose of the present study was to reveal novel physiologic functions of BMAL1 in the heart, as well as to determine the pathologic consequences of chronic disruption of this circadian clock component. To address this goal, we generated cardiomyocyte-specific Bmal1 knockout (CBK) mice. Following validation of the CBK model, combined microarray and in silico analyses were performed, identifying 19 putative direct BMAL1 target genes, which included a number of metabolic (e.g., β-hydroxybutyrate dehydrogenase 1 [Bdh1]) and signaling (e.g., the p85α regulatory subunit of phosphatidylinositol 3-kinase [Pik3r1]) genes. Results from subsequent validation studies were consistent with regulation of Bdh1 and Pik3r1 by BMAL1, with predicted impairments in ketone body metabolism and signaling observed in CBK hearts. Furthermore, CBK hearts exhibited depressed glucose utilization, as well as a differential response to a physiologic metabolic stress (i.e., fasting). Consistent with BMAL1 influencing critical functions in the heart, echocardiographic, gravimetric, histologic, and molecular analyses revealed age-onset development of dilated cardiomyopathy in CBK mice, which was associated with a severe reduction in life span. Collectively, our studies reveal that BMAL1 influences metabolism, signaling, and contractile function of the heart.


Journal of the American College of Cardiology | 2011

The Primary Benefits of Angiotensin-Converting Enzyme Inhibition on Cardiac Remodeling Occur During Sleep Time in Murine Pressure Overload Hypertrophy

Tami A. Martino; Nazneen Tata; Jeremy A. Simpson; Rachel D. Vanderlaan; Fayez Dawood; M. Golam Kabir; Neelam Khaper; Carlo Cifelli; Peter S. Podobed; Peter Liu; Mansoor Husain; Scott P. Heximer; Peter H. Backx; Michael J. Sole

OBJECTIVES Our objective was to test the hypothesis that there is a significant diurnal variation for the therapeutic benefit of angiotensin-converting enzyme (ACE) inhibitors on pressure-overload cardiovascular hypertrophy. BACKGROUND Physiological and molecular processes exhibit diurnal rhythms that may affect efficacy of disease treatment (chronotherapy). Evidence suggests that the heart primarily remodels during sleep. Although a growing body of clinical and epidemiological evidence suggests that the timing of therapy, such as ACE inhibition, alters diurnal blood pressure patterns in patients with hypertension, the benefits of chronotherapy on myocardial and vascular remodeling have not been studied. METHODS We examined the effects of the short-acting ACE inhibitor, captopril, on the structure and function of cardiovascular tissue subjected to pressure overload by transverse aortic constriction (TAC) in mice. Captopril (15 mg/kg intraperitoneally) or placebo was administered at either murine sleep time or wake time for 8 weeks starting 1 week after surgery. RESULTS TAC mice given captopril at sleep time had improved cardiac function and significantly decreased heart: body weight ratios, myocyte cross-sectional areas, intramyocardial vascular medial wall thickness, and perivascular collagen versus TAC mice given captopril or placebo during wake time. Captopril induced similar drops in blood pressure at sleep or wake time, suggesting that time-of-day differences were not attributable to blood pressure changes. These beneficial effects of captopril were correlated with diurnal changes in ACE mRNA expression in the heart. CONCLUSIONS The ACE inhibitor captopril benefited cardiovascular remodeling only when administered during sleep; wake-time captopril ACE inhibition was identical to that of placebo. These studies support the hypothesis that the heart (and vessels) remodel during sleep time and also illustrate the importance of diurnal timing for some cardiovascular therapies.


Circulation Research | 2014

Short-Term Disruption of Diurnal Rhythms After Murine Myocardial Infarction Adversely Affects Long-Term Myocardial Structure and Function

Faisal J. Alibhai; Elena V. Tsimakouridze; Nirmala Chinnappareddy; David C. Wright; F. Billia; M. Lynne O’Sullivan; W. Glen Pyle; Michael J. Sole; Tami A. Martino

Rationale: Patients in intensive care units are disconnected from their natural environment. Synchrony between environmental diurnal rhythms and intracellular circadian rhythms is essential for normal organ biology; disruption causes pathology. Whether disturbing rhythms after myocardial infarction (MI) exacerbates long-term myocardial dysfunction is not known. Objective: Short-term diurnal rhythm disruption immediately after MI impairs remodeling and adversely affects long-term cardiac structure and function in a murine model. Methods and Results: Mice were infarcted by left anterior descending coronary artery ligation (MI model) within a 3-hour time window, randomized to either a normal diurnal or disrupted environment for 5 days, and then maintained under normal diurnal conditions. Initial infarct size was identical. Short-term diurnal disruption adversely affected body metabolism and altered early innate immune responses. In the first 5 days, crucial for scar formation, there were significant differences in cardiac myeloperoxidase, cytokines, neutrophil, and macrophage infiltration. Homozygous clock mutant mice exhibited altered infiltration after MI, consistent with circadian mechanisms underlying innate immune responses crucial for scar formation. In the proliferative phase, 1 week after MI, this led to significantly less blood vessel formation in the infarct region of disrupted mice; by day 14, echocardiography showed increased left ventricular dilation and infarct expansion. These differences continued to evolve with worse cardiac structure and function by 8 weeks after MI. Conclusions: Diurnal rhythm disruption immediately after MI impaired healing and exacerbated maladaptive cardiac remodeling. These preclinical findings suggest that disrupted diurnal rhythms such as found in modern intensive care unit environments may adversely affect long-term patient outcome.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Vascular circadian rhythms in a mouse vascular smooth muscle cell line (Movas-1)

Jennifer A. Chalmers; Tami A. Martino; Nazneen Tata; Martin R. Ralph; Michael J. Sole; Denise D. Belsham

The circadian system in mammals is a hierarchy of oscillators throughout the organism that are coordinated by the circadian clock in the hypothalamic suprachiasmatic nucleus. Peripheral clocks act to integrate time-of-day information from neural or hormonal signals, regulating gene expression, and, subsequently, organ physiology. However, the mechanisms by which the central clock communicates with peripheral oscillators are not understood and are likely tissue specific. In this study, we establish a mouse vascular cell model suitable for investigations of these mechanisms at a molecular level. Using the immortalized vascular smooth muscle cell line Movas-1, we determined that these cells express the circadian clock machinery with robust rhythms in mRNA expression over a 36-h period after serum shock synchronization. Furthermore, norepinephrine and forskolin were able to synchronize circadian rhythms in bmal1. With synchronization, we observed cycling of specific genes, including the tissue inhibitor of metalloproteinase 1 and 3 (timp1, timp3), collagen 3a1 (col3a1), transgelin 1 (sm22alpha), and calponin 1 (cnn1). Diurnal expression of these genes was also found in vivo in mouse aortic tissue, using microarray and real-time RT-PCR analysis. Both of these revealed ultradian rhythms in genes similar to the cycling observed in Movas-1 in vitro. These findings highlight the cyclical nature of structurally important genes in the vasculature that is similar both in vivo and in vitro. This study establishes the Movas-1 cells as a novel cell model from which to further investigate the molecular mechanisms of clock regulation in the vasculature.

Collaboration


Dive into the Tami A. Martino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge