Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tammaryn Lashley is active.

Publication


Featured researches published by Tammaryn Lashley.


The New England Journal of Medicine | 2013

TREM2 Variants in Alzheimer's Disease

Rita Guerreiro; Aleksandra Wojtas; Jose Bras; Minerva M. Carrasquillo; Ekaterina Rogaeva; Elisa Majounie; Carlos Cruchaga; Celeste Sassi; John Kauwe; Steven G. Younkin; Lili-Naz Hazrati; John Collinge; Jennifer M. Pocock; Tammaryn Lashley; Julie Williams; Jean Charles Lambert; Philippe Amouyel; Alison Goate; Rosa Rademakers; Kevin Morgan; John Powell; Peter St George-Hyslop; Andrew Singleton; John Hardy

BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimers disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimers disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimers disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimers disease than in controls in the discovery set (P=0.02). There were 22 variant alleles in 1092 patients with Alzheimers disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimers disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P=0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimers disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimers disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimers disease. (Funded by Alzheimers Research UK and others.).


Nature Medicine | 2008

Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation.

Jia-Yi Li; Elisabet Englund; Janice L. Holton; Denis Soulet; Peter Hagell; Andrew J. Lees; Tammaryn Lashley; Niall Quinn; Stig Rehncrona; Anders Björklund; Håkan Widner; Tamas Revesz; Olle Lindvall; Patrik Brundin

Two subjects with Parkinsons disease who had long-term survival of transplanted fetal mesencephalic dopaminergic neurons (11–16 years) developed α-synuclein–positive Lewy bodies in grafted neurons. Our observation has key implications for understanding Parkinsons pathogenesis by providing the first evidence, to our knowledge, that the disease can propagate from host to graft cells. However, available data suggest that the majority of grafted cells are functionally unimpaired after a decade, and recipients can still experience long-term symptomatic relief.


Nature Genetics | 2010

Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions

Vivianna M. Van Deerlin; Patrick Sleiman; Maria Martinez-Lage; Alice Chen-Plotkin; Li-San Wang; Neill R. Graff-Radford; Dennis W. Dickson; Rosa Rademakers; Bradley F. Boeve; Murray Grossman; Steven E. Arnold; David Mann; Stuart Pickering-Brown; Harro Seelaar; Peter Heutink; John C. van Swieten; Jill R. Murrell; Bernardino Ghetti; Salvatore Spina; Jordan Grafman; John R. Hodges; Maria Grazia Spillantini; Sid Gilman; Andrew P. Lieberman; Jeffrey Kaye; Randall L. Woltjer; Eileen H. Bigio; M.-Marsel Mesulam; Safa Al-Sarraj; Claire Troakes

Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 × 10−11; odds ratio, minor allele (C) 0.61, 95% CI 0.53–0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 × 10−4). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.


Brain | 2011

Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important?

Yaroslau Compta; Laura Parkkinen; Sean S. O'Sullivan; Jana Vandrovcova; Janice L. Holton; Catherine Collins; Tammaryn Lashley; Constantinos Kallis; David R. Williams; Rohan de Silva; Andrew J. Lees; Tamas Revesz

The relative importance of Lewy- and Alzheimer-type pathologies to dementia in Parkinsons disease remains unclear. We have examined the combined associations of α-synuclein, tau and amyloid-β accumulation in 56 pathologically confirmed Parkinsons disease cases, 29 of whom had developed dementia. Cortical and subcortical amyloid-β scores were obtained, while tau and α-synuclein pathologies were rated according to the respective Braak stages. Additionally, cortical Lewy body and Lewy neurite scores were determined and Lewy body densities were generated using morphometry. Non-parametric statistics, together with regression models, receiver-operating characteristic curves and survival analyses were applied. Cortical and striatal amyloid-β scores, Braak tau stages, cortical Lewy body, Lewy neurite scores and Lewy body densities, but not Braak α-synuclein stages, were all significantly greater in the Parkinsons disease-dementia group (P<0.05), with all the pathologies showing a significant positive correlation to each other (P<0.05). A combination of pathologies [area under the receiver-operating characteristic curve=0.95 (0.88-1.00); P<0.0001] was a better predictor of dementia than the severity of any single pathology. Additionally, cortical amyloid-β scores (r=-0.62; P=0.043) and Braak tau stages (r=-0.52; P=0.028), but not Lewy body scores (r=-0.25; P=0.41) or Braak α-synuclein stages (r=-0.44; P=0.13), significantly correlated with mini-mental state examination scores in the subset of cases with this information available within the last year of life (n=15). High cortical amyloid-β score (P=0.017) along with an older age at onset (P=0.001) were associated with a shorter time-to-dementia period. A combination of Lewy- and Alzheimer-type pathologies is a robust pathological correlate of dementia in Parkinsons disease, with quantitative and semi-quantitative assessment of Lewy pathology being more informative than Braak α-synuclein stages. Cortical amyloid-β and age at disease onset seem to determine the rate to dementia.


Brain | 2012

Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features

Colin J. Mahoney; Jon Beck; Jonathan D. Rohrer; Tammaryn Lashley; Kin Mok; Tim Shakespeare; Tom Yeatman; Elizabeth K. Warrington; Jonathan M. Schott; Nick C. Fox; John Hardy; John Collinge; Tamas Revesz; Simon Mead; Jason D. Warren

An expanded hexanucleotide repeat in the C9ORF72 gene has recently been identified as a major cause of familial frontotemporal lobar degeneration and motor neuron disease, including cases previously identified as linked to chromosome 9. Here we present a detailed retrospective clinical, neuroimaging and histopathological analysis of a C9ORF72 mutation case series in relation to other forms of genetically determined frontotemporal lobar degeneration ascertained at a specialist centre. Eighteen probands (19 cases in total) were identified, representing 35% of frontotemporal lobar degeneration cases with identified mutations, 36% of cases with clinical evidence of motor neuron disease and 7% of the entire cohort. Thirty-three per cent of these C9ORF72 cases had no identified relevant family history. Families showed wide variation in clinical onset (43–68 years) and duration (1.7–22 years). The most common presenting syndrome (comprising a half of cases) was behavioural variant frontotemporal dementia, however, there was substantial clinical heterogeneity across the C9ORF72 mutation cohort. Sixty per cent of cases developed clinical features consistent with motor neuron disease during the period of follow-up. Anxiety and agitation and memory impairment were prominent features (between a half to two-thirds of cases), and dominant parietal dysfunction was also frequent. Affected individuals showed variable magnetic resonance imaging findings; however, relative to healthy controls, the group as a whole showed extensive thinning of frontal, temporal and parietal cortices, subcortical grey matter atrophy including thalamus and cerebellum and involvement of long intrahemispheric, commissural and corticospinal tracts. The neuroimaging profile of the C9ORF72 expansion was significantly more symmetrical than progranulin mutations with significantly less temporal lobe involvement than microtubule-associated protein tau mutations. Neuropathological examination in six cases with C9ORF72 mutation from the frontotemporal lobar degeneration series identified histomorphological features consistent with either type A or B TAR DNA-binding protein-43 deposition; however, p62-positive (in excess of TAR DNA-binding protein-43 positive) neuronal cytoplasmic inclusions in hippocampus and cerebellum were a consistent feature of these cases, in contrast to the similar frequency of p62 and TAR DNA-binding protein-43 deposition in 53 control cases with frontotemporal lobar degeneration–TAR DNA-binding protein. These findings corroborate the clinical importance of the C9ORF72 mutation in frontotemporal lobar degeneration, delineate phenotypic and neuropathological features that could help to guide genetic testing, and suggest hypotheses for elucidating the neurobiology of a culprit subcortical network.


Brain | 2011

Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration

Jonathan D. Rohrer; Tammaryn Lashley; Jonathan M. Schott; Jane E. Warren; Simon Mead; Adrian M. Isaacs; Jonathan Beck; John Hardy; Rohan de Silva; Elizabeth K. Warrington; Claire Troakes; Safa Al-Sarraj; Andrew King; Barbara Borroni; Matthew J. Clarkson; Sebastien Ourselin; Janice L. Holton; Nick C. Fox; Tamas Revesz; Jason D. Warren

Relating clinical symptoms to neuroanatomical profiles of brain damage and ultimately to tissue pathology is a key challenge in the field of neurodegenerative disease and particularly relevant to the heterogeneous disorders that comprise the frontotemporal lobar degeneration spectrum. Here we present a retrospective analysis of clinical, neuropsychological and neuroimaging (volumetric and voxel-based morphometric) features in a pathologically ascertained cohort of 95 cases of frontotemporal lobar degeneration classified according to contemporary neuropathological criteria. Forty-eight cases (51%) had TDP-43 pathology, 42 (44%) had tau pathology and five (5%) had fused-in-sarcoma pathology. Certain relatively specific clinicopathological associations were identified. Semantic dementia was predominantly associated with TDP-43 type C pathology; frontotemporal dementia and motoneuron disease with TDP-43 type B pathology; young-onset behavioural variant frontotemporal dementia with FUS pathology; and the progressive supranuclear palsy syndrome with progressive supranuclear palsy pathology. Progressive non-fluent aphasia was most commonly associated with tau pathology. However, the most common clinical syndrome (behavioural variant frontotemporal dementia) was pathologically heterogeneous; while pathologically proven Picks disease and corticobasal degeneration were clinically heterogeneous, and TDP-43 type A pathology was associated with similar clinical features in cases with and without progranulin mutations. Volumetric magnetic resonance imaging, voxel-based morphometry and cluster analyses of the pathological groups here suggested a neuroanatomical framework underpinning this clinical and pathological diversity. Frontotemporal lobar degeneration-associated pathologies segregated based on their cerebral atrophy profiles, according to the following scheme: asymmetric, relatively localized (predominantly temporal lobe) atrophy (TDP-43 type C); relatively symmetric, relatively localized (predominantly temporal lobe) atrophy (microtubule-associated protein tau mutations); strongly asymmetric, distributed atrophy (Picks disease); relatively symmetric, predominantly extratemporal atrophy (corticobasal degeneration, fused-in-sarcoma pathology). TDP-43 type A pathology was associated with substantial individual variation; however, within this group progranulin mutations were associated with strongly asymmetric, distributed hemispheric atrophy. We interpret the findings in terms of emerging network models of neurodegenerative disease: the neuroanatomical specificity of particular frontotemporal lobar degeneration pathologies may depend on an interaction of disease-specific and network-specific factors.


Acta Neuropathologica | 2009

Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies

Tamas Revesz; Janice L. Holton; Tammaryn Lashley; Gordon T Plant; Blas Frangione; Agueda Rostagno; Jorge Ghiso

In cerebral amyloid angiopathy (CAA), amyloid fibrils deposit in walls of arteries, arterioles and less frequently in veins and capillaries of the central nervous system, often resulting in secondary degenerative vascular changes. Although the amyloid-β peptide is by far the commonest amyloid subunit implicated in sporadic and rarely in hereditary forms of CAA, a number of other proteins may also be involved in rare familial diseases in which CAA is also a characteristic morphological feature. These latter proteins include the ABri and ADan subunits in familial British dementia and familial Danish dementia, respectively, which are also known under the umbrella term BRI2 gene-related dementias, variant cystatin C in hereditary cerebral haemorrhage with amyloidosis of Icelandic-type, variant transthyretins in meningo-vascular amyloidosis, disease-associated prion protein (PrPSc) in hereditary prion disease with premature stop codon mutations and mutated gelsolin (AGel) in familial amyloidosis of Finnish type. In this review, the characteristic morphological features of the different CAAs is described and the implication of the biochemical, genetic and transgenic animal data for the pathogenesis of CAA is discussed.


Neuropathology and Applied Neurobiology | 2003

Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies.

R de Silva; Tammaryn Lashley; G Gibb; Diane P. Hanger; Andrew D. Hope; Andrew R. Reid; Rina Bandopadhyay; Michelle A. Utton; C Strand; T Jowett; Nadeem Khan; Brian H. Anderton; Nicola Wood; Janice L. Holton; Tamas Revesz; Andrew J. Lees

Pathological inclusions containing fibrillar aggregates of hyperphosphorylated tau protein are a characteristic feature in the tauopathies, which include Alzheimers disease, frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP‐17), progressive supranuclear palsy, corticobasal degeneration and Picks disease. Tau isoform composition and cellular and regional distribution as well as morphology of these inclusions vary in each disorder. Recently, several pathological missense and exon 10 splice‐donor site mutations of the tau gene were iden‐tified in FTDP‐17. Exon 10 codes for the second of four microtubule‐binding repeat domains. The splice‐site mutations result in increased inclusion of exon 10 which causes a relative increase in tau isoforms containing four microtubule‐binding repeat domains over those containing three repeat domains. This could be a central aetiological mechanism in FTDP‐17 and, perhaps, other related tauopathies. We have investigated changes in the ratio and distribution of three‐repeat and four‐repeat tau in the different tauopathies as a basis of the phenotypic range of these disorders and the selective vulnerability of different subsets of neurones. In this study, we have developed two monoclonal antibodies, RD3 and RD4 that effectively distinguish these closely related tau isoforms. These new isoform‐specific antibodies are useful tools for analysing tau isoform expression and distribution as well as pathological changes in the human brain.


Brain Pathology | 2006

Sporadic and Familial Cerebral Amyloid Angiopathies

Tamas Revesz; Janice L. Holton; Tammaryn Lashley; Gordon T. Plant; Agueda Rostagno; Jorge Ghiso; Blas Frangione

Cerebral amyloid angiopathy (CAA) is the term used to describe deposition of amyloid in the walls of arteries, arterioles and, less often, capillaries and veins of the central nervous system. CAAs are an important cause of cerebral hemorrhage and may also result in ischemic lesions and dementia. A number of amyloid proteins are known to cause CAA. The most common sporadic CAA, caused by Aβ deposition, is associated with aging and is a common feature of Alzheimer disease (AD). CAA occurs in several familial conditions, including hereditary cerebral hemorrhage with amyloidosis of Icelandic type caused by deposition of mutant cystatin C, hereditary cerebral hemorrhage with amyloidosis Dutch type and familial AD with deposition of either Aβ variants or wild‐type Aβ, the transthyretin‐related meningo‐vascular amyloidoses, gelsolin as well as familial prion disease‐related CAAs and the recently described BRI2 gene‐related CAAs in familial British dementia and familial Danish dementia. This review focuses on the morphological, biochemical, and genetic aspects as well as the clinical significance of CAAs with special emphasis on the BRI2 gene‐related cerebrovascular amyloidoses. We also discuss data relevant to the pathomechanism of the different forms of CAA with an emphasis on the most common Aβ‐related types.


Annals of Neurology | 2000

Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by ps-1 mutations that lead to exceptionally high amyloid-β concentrations

Henry Houlden; Matt Baker; Eileen McGowan; Patrick A. Lewis; Mike Hutton; Richard Crook; Nicholas W. Wood; Samir Kumar-Singh; Jennian Geddes; Michael Swash; Francesco Scaravilli; Janice L. Holton; Tammaryn Lashley; Taisuke Tomita; Tadafumi Hashimoto; Auli Verkkoniemi; Hannu Kalimo; Mirja Somer; Anders Paetau; Jean-Jacques Martin; Christine Van Broeckhoven; Todd E. Golde; John Hardy; Matti Haltia; Tamas Revesz

We describe 3 new families affected by Alzheimers disease with spastic paraparesis. In affected individuals, including the earliest known patient with this clinical syndrome, neuropathological examination revealed large “cotton wool” plaques similar to those we have previously described in a Finnish family. In the families in which DNA was available, presenilin‐1 mutations were observed. Transfection of cells with these mutant genes caused exceptionally large increases in secreted Aβ42 levels. Furthermore, brain tissue from individuals with this syndrome had very high amyloid‐β concentrations. These findings define the molecular pathogenesis of an important subgroup of Alzheimers disease and have implications for the pathogenesis of the disease in general. Ann Neurol 2000;48:806–808

Collaboration


Dive into the Tammaryn Lashley's collaboration.

Top Co-Authors

Avatar

Tamas Revesz

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Janice L. Holton

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Lees

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Nick C. Fox

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason D. Warren

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rina Bandopadhyay

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge