Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tammy Gillis is active.

Publication


Featured researches published by Tammy Gillis.


Cell | 2013

Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease.

Bin Zhang; Chris Gaiteri; Liviu-Gabriel Bodea; Zhi Wang; Joshua McElwee; Alexei Podtelezhnikov; Chunsheng Zhang; Tao Xie; Linh Tran; Radu Dobrin; Eugene M. Fluder; Bruce E. Clurman; Stacey Melquist; Manikandan Narayanan; Christine Suver; Hardik Shah; Milind Mahajan; Tammy Gillis; Jayalakshmi S. Mysore; Marcy E. MacDonald; John Lamb; David A. Bennett; Cliona Molony; David J. Stone; Vilmundur Gudnason; Amanda J. Myers; Eric E. Schadt; Harald Neumann; Jun Zhu; Valur Emilsson

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimers disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Cell Stem Cell | 2012

Induced Pluripotent Stem Cells from Patients with Huntington’s Disease : Show CAG Repeat-Expansion-Associated Phenotypes

Virginia B. Mattis; Soshana Svendsen; Allison D. Ebert; Clive N. Svendsen; Alvin R. King; Malcolm Casale; Sara T. Winokur; Gayani Batugedara; Marquis P. Vawter; Peter J. Donovan; Leslie F. Lock; Leslie M. Thompson; Yu Zhu; Elisa Fossale; Ranjit S. Atwal; Tammy Gillis; Jayalakshmi S. Mysore; Jian Hong Li; Ihn Sik Seong; Yiping Shen; Xiaoli Chen; Vanessa C. Wheeler; Marcy E. MacDonald; James F. Gusella; Sergey Akimov; Nicolas Arbez; Tarja Juopperi; Tamara Ratovitski; Jason H. Chiang; Woon Roung Kim

Huntingtons disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, The HD Consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG-repeat-expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease-associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal, as assessed using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a human stem cell platform for screening new candidate therapeutics.


American Journal of Human Genetics | 2002

Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse.

Hanlin Gao; Rose-Mary Boustany; Janice A. Espinola; Susan L. Cotman; Lakshmi Srinidhi; Kristen Auger Antonellis; Tammy Gillis; Xuebin Qin; Shumei Liu; Leah Rae Donahue; Roderick T. Bronson; Jerry R. Faust; Derek Stout; Jonathan L. Haines; Terry J. Lerner; Marcy E. MacDonald

The CLN6 gene that causes variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), a recessively inherited neurodegenerative disease that features blindness, seizures, and cognitive decline, maps to 15q21-23. We have used multiallele markers spanning this approximately 4-Mb candidate interval to reveal a core haplotype, shared in Costa Rican families with vLINCL but not in a Venezuelan kindred, that highlighted a region likely to contain the CLN6 defect. Systematic comparison of genes from the minimal region uncovered a novel candidate, FLJ20561, that exhibited DNA sequence changes specific to the different disease chromosomes: a G-->T transversion in exon 3, introducing a stop codon on the Costa Rican haplotype, and a codon deletion in exon 5, eliminating a conserved tyrosine residue on the Venezuelan chromosome. Furthermore, sequencing of the murine homologue in the nclf mouse, which manifests recessive NCL-like disease, disclosed a third lesion-an extra base pair in exon 4, producing a frameshift truncation on the nclf chromosome. Thus, the novel approximately 36-kD CLN6-gene product augments an intriguing set of unrelated membrane-spanning proteins, whose deficiency causes NCL in mouse and man.


Neurology | 2012

CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion

Jong-Min Lee; Eliana Marisa Ramos; Ji Hyun Lee; Tammy Gillis; Jayalakshmi S. Mysore; Michael R. Hayden; Simon C. Warby; Patrick J. Morrison; Martha Nance; Christopher A. Ross; Russell L. Margolis; Ferdinando Squitieri; S. Orobello; S. Di Donato; Estrella Gomez-Tortosa; Carmen Ayuso; Oksana Suchowersky; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Randi Jones; Tetsuo Ashizawa; Samuel Frank; Marie Saint-Hilaire; Steven M. Hersch; H.D. Rosas; Diane Lucente; Madeline Harrison; Andrea Zanko

Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695


Cell | 2015

Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease

Jong-Min Lee; Vanessa C. Wheeler; Michael J. Chao; Jean Paul Vonsattel; Ricardo Mouro Pinto; Diane Lucente; Kawther Abu-Elneel; Eliana Marisa Ramos; Jayalakshmi S. Mysore; Tammy Gillis; Marcy E. MacDonald; James F. Gusella; Denise Harold; Timothy Stone; Valentina Escott-Price; Jun Han; Alexey Vedernikov; Peter Holmans; Lesley Jones; Seung Kwak; Mithra Mahmoudi; Michael Orth; G. Bernhard Landwehrmeyer; Jane S. Paulsen; E. Ray Dorsey; Ira Shoulson; Richard H. Myers

As a Mendelian neurodegenerative disorder, the genetic risk of Huntingtons disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders.


Archive | 2012

COHORT study oft the HSG. CAG repeat expansion in Huntington disease determines age at onset in al fully dominant fashion

Jong-Min Lee; Eliana Marisa Ramos; Ji Hyun Lee; Tammy Gillis; Jayalakshmi S. Mysore; Hayden; Simon C. Warby; Patrick J. Morrison; Martha Nance; Christopher A. Ross; Russell L. Margolis; Ferdinando Squitieri; S. Orobello; S Di Donato; Estrella Gomez-Tortosa; Carmen Ayuso; Oksana Suchowersky; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Randi Jones; Tetsuo Ashizawa; Samuel Frank; Marie-Helene Saint-Hilaire; Steven M. Hersch; H.D. Rosas; Diane Lucente; Madeline Harrison; Andrea Zanko

Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695


Nature | 2010

Functionally defective germline variants of sialic acid acetylesterase in autoimmunity

Ira Surolia; Stephan P. Pirnie; Vasant Chellappa; Kendra N. Taylor; Annaiah Cariappa; Jesse Moya; Haoyuan Liu; Daphne W. Bell; David R. Driscoll; Sven Diederichs; Khaleda Haider; Ilka Arun Netravali; Sheila Le; Roberto Elia; Ethan Dow; Annette Lee; Jan Freudenberg; Philip L. De Jager; Yves Chretien; Ajit Varki; Marcy E. MacDonald; Tammy Gillis; Timothy W. Behrens; Donald B. Bloch; Deborah S. Collier; Joshua R. Korzenik; Daniel K. Podolsky; David A. Hafler; Mandakolathur R. Murali; Bruce E. Sands

Sialic acid acetylesterase (SIAE) is an enzyme that negatively regulates B lymphocyte antigen receptor signalling and is required for the maintenance of immunological tolerance in mice. Heterozygous loss-of-function germline rare variants and a homozygous defective polymorphic variant of SIAE were identified in 24/923 subjects of European origin with relatively common autoimmune disorders and in 2/648 controls of European origin. All heterozygous loss-of-function SIAE mutations tested were capable of functioning in a dominant negative manner. A homozygous secretion-defective polymorphic variant of SIAE was catalytically active, lacked the ability to function in a dominant negative manner, and was seen in eight autoimmune subjects but in no control subjects. The odds ratio for inheriting defective SIAE alleles was 8.6 in all autoimmune subjects, 8.3 in subjects with rheumatoid arthritis, and 7.9 in subjects with type I diabetes. Functionally defective SIAE rare and polymorphic variants represent a strong genetic link to susceptibility in relatively common human autoimmune disorders.


Neurobiology of Disease | 2009

Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes

Ella Dragileva; Audrey E. Hendricks; Allison Teed; Tammy Gillis; Edith Lopez; Errol C. Friedberg; Raju Kucherlapati; Winfried Edelmann; Kathryn L. Lunetta; Marcy E. MacDonald; Vanessa C. Wheeler

Modifying the length of the Huntingtons disease (HD) CAG repeat, the major determinant of age of disease onset, is an attractive therapeutic approach. To explore this we are investigating mechanisms of intergenerational and somatic HD CAG repeat instability. Here, we have crossed HD CAG knock-in mice onto backgrounds deficient in mismatch repair genes, Msh3 and Msh6, to discern the effects on CAG repeat size and disease pathogenesis. We find that different mechanisms predominate in inherited and somatic instability, with Msh6 protecting against intergenerational contractions and Msh3 required both for increasing CAG length and for enhancing an early disease phenotype in striatum. Therefore, attempts to decrease inherited repeat size may entail a full understanding of Msh6 complexes, while attempts to block the age-dependent increases in CAG size in striatal neurons and to slow the disease process will require a full elucidation of Msh3 complexes and their function in CAG repeat instability.


American Journal of Human Genetics | 2005

Biotin-Responsive Basal Ganglia Disease Maps to 2q36.3 and Is Due to Mutations in SLC19A3

Wenqi Zeng; Eiman Al-Yamani; James S. Acierno; Susan A. Slaugenhaupt; Tammy Gillis; Marcy E. MacDonald; Pinar T. Ozand; James F. Gusella

Biotin-responsive basal ganglia disease (BBGD) is a recessive disorder with childhood onset that presents as a subacute encephalopathy, with confusion, dysarthria, and dysphagia, and that progresses to severe cogwheel rigidity, dystonia, quadriparesis, and eventual death, if left untreated. BBGD symptoms disappear within a few days with the administration of high doses of biotin (5-10 mg/kg/d). On brain magnetic resonance imaging examination, patients display central bilateral necrosis in the head of the caudate, with complete or partial involvement of the putamen. All patients diagnosed to date are of Saudi, Syrian, or Yemeni ancestry, and all have consanguineous parents. Using linkage analysis in four families, we mapped the genetic defect near marker D2S2158 in 2q36.3 (LOD=5.9; theta=0.0) to a minimum candidate region (approximately 2 Mb) between D2S2354 and D2S1256, on the basis of complete homozygosity. In this segment, each family displayed one of two different missense mutations that altered the coding sequence of SLC19A3, the gene for a transporter related to the reduced-folate (encoded by SLC19A1) and thiamin (encoded by SLC19A2) transporters.


Human Molecular Genetics | 2009

Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset

Meera Swami; Audrey E. Hendricks; Tammy Gillis; Tiffany Massood; Jayalakshmi S. Mysore; Richard H. Myers; Vanessa C. Wheeler

The age of onset of Huntingtons disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.

Collaboration


Dive into the Tammy Gillis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina Frontali

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge