Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamsyn M. Uren Webster is active.

Publication


Featured researches published by Tamsyn M. Uren Webster.


Environmental Science & Technology | 2014

Effects of Glyphosate and its Formulation, Roundup, on Reproduction in Zebrafish (Danio rerio)

Tamsyn M. Uren Webster; Lauren V. Laing; Hannah Florance; Eduarda M. Santos

Roundup and its active ingredient glyphosate are among the most widely used herbicides worldwide and may contaminate surface waters. Research suggests both Roundup and glyphosate induce oxidative stress in fish and may also cause reproductive toxicity in mammalian systems. We aimed to investigate the reproductive effects of Roundup and glyphosate in fish and the potential associated mechanisms of toxicity. To do this, we conducted a 21-day exposure of breeding zebrafish (Danio rerio) to 0.01, 0.5, and 10 mg/L (glyphosate acid equivalent) Roundup and 10 mg/L glyphosate. 10 mg/L glyphosate reduced egg production but not fertilization rate in breeding colonies. Both 10 mg/L Roundup and glyphosate increased early stage embryo mortalities and premature hatching. However, exposure during embryogenesis alone did not increase embryo mortality, suggesting that this effect was caused primarily by exposure during gametogenesis. Transcript profiling of the gonads revealed 10 mg/L Roundup and glyphosate induced changes in the expression of cyp19a1 and esr1 in the ovary and hsd3b2, cat, and sod1 in the testis. Our results demonstrate that these chemicals cause reproductive toxicity in zebrafish, although only at high concentrations unlikely to occur in the environment, and likely mechanisms of toxicity include disruption of the steroidogenic biosynthesis pathway and oxidative stress.


Philosophical Transactions of the Royal Society B | 2017

Adaptive capabilities and fitness consequences associated with pollution exposure in fish

Tamsyn M. Uren Webster

Many fish populations are exposed to harmful levels of chemical pollution and selection pressures associated with these exposures have led to the evolution of tolerance. Our understanding of the physiological basis for these adaptations is limited, but they are likely to include processes involved with the absorption, distribution, metabolism and/or excretion of the target chemical. Other potential adaptive mechanisms include enhancements in antioxidant responses, an increased capacity for DNA and/or tissue repair and alterations to the life cycle of fish that enable earlier reproduction. Analysis of single-nucleotide polymorphism frequencies has shown that tolerance to hydrocarbon pollutants in both marine and estuarine fish species involves alteration in the expression of the xenobiotic metabolism enzyme CYP1A. In this review, we present novel data showing also that variants of the CYP1A gene have been under selection in guppies living in Trinidadian rivers heavily polluted with crude oil. Potential costs associated with these adaptations could reduce fitness in unpolluted water conditions. Integrating knowledge of local adaptation to pollution is an important future consideration in conservation practices such as for successful restocking, and improving connectivity within river systems. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’.


Environmental Science & Technology | 2015

The Herbicide Linuron Inhibits Cholesterol Biosynthesis and Induces Cellular Stress Responses in Brown Trout

Tamsyn M. Uren Webster; Mandy H. Perry; Eduarda M. Santos

The herbicide linuron is used worldwide, and has been detected in surface waters as well as in food and drinking water. Toxicological studies have reported that linuron acts as an antiandrogen in vitro and in vivo and disrupts mammalian male reproductive function. However, global mechanisms of linuron toxicity are poorly documented. We used RNA-seq to characterize the hepatic transcriptional response of mature male brown trout exposed for 4 days to 1.7, 15.3, and 225.9 μg/L linuron. We identified a striking decrease in the expression of transcripts encoding the majority of enzymes forming the cholesterol biosynthesis pathway. We also measured a very significant decrease in total hepatic cholesterol in fish exposed to 225.9 μg/L linuron and a negative correlation between total cholesterol and linuron treatment concentration. We hypothesize that inhibition of cholesterol biosynthesis may result from the disruption of androgen signaling by linuron. Additionally, there was increased expression of a number of transcripts involved in cellular stress responses, including cyp1a (up to 560-fold), molecular chaperones, and antioxidant enzymes. We found some evidence of similar patterns of transcriptional change in fish exposed to an environmentally relevant concentration of linuron, and further research should investigate the potential for adverse effects to occur following chronic environmental exposure.


Environmental Science & Technology | 2016

Hypoxia Suppressed Copper Toxicity during Early Development in Zebrafish Embryos in a Process Mediated by the Activation of the HIF Signaling Pathway

Jennifer A. Fitzgerald; Hannah M Jameson; Victoria H Dewar Fowler; Georgia L Bond; Lisa K. Bickley; Tamsyn M. Uren Webster; Nicolas R. Bury; Robert J. Wilson; Eduarda M. Santos

Hypoxia is a global and increasingly important stressor in aquatic ecosystems, with major impacts on biodiversity worldwide. Hypoxic waters are often contaminated with a wide range of chemicals but little is known about the interactions between these stressors. We investigated the effects of hypoxia on the responses of zebrafish (Danio rerio) embryos to copper, a widespread aquatic contaminant. We showed that during continuous exposures copper toxicity was reduced by over 2-fold under hypoxia compared to normoxia. When exposures were conducted during 24 h windows, hypoxia reduced copper toxicity during early development and increased its toxicity in hatched larvae. To investigate the role of the hypoxia signaling pathway on the suppression of copper toxicity during early development, we stabilized the hypoxia inducible factor (HIF) pathway under normoxia using a prolyl-4-hydroxylase inhibitor, dimethyloxalylglycine (DMOG) and demonstrated that HIF activation results in a strong reduction in copper toxicity. We also established that the reduction in copper toxicity during early development was independent of copper uptake, while after hatching, copper uptake was increased under hypoxia, corresponding to an increase in copper toxicity. These findings change our understanding of the current and future impacts of worldwide oxygen depletion on fish communities challenged by anthropogenic toxicants.


Physiological Genomics | 2015

Identification of conserved hepatic transcriptomic responses to 17β-estradiol using high-throughput sequencing in brown trout

Tamsyn M. Uren Webster; Janice A. Shears; Karen Moore; Eduarda M. Santos

Estrogenic chemicals are major contaminants of surface waters and can threaten the sustainability of natural fish populations. Characterization of the global molecular mechanisms of toxicity of environmental contaminants has been conducted primarily in model species rather than species with limited existing transcriptomic or genomic sequence information. We aimed to investigate the global mechanisms of toxicity of an endocrine disrupting chemical of environmental concern [17β-estradiol (E2)] using high-throughput RNA sequencing (RNA-Seq) in an environmentally relevant species, brown trout (Salmo trutta). We exposed mature males to measured concentrations of 1.94, 18.06, and 34.38 ng E2/l for 4 days and sequenced three individual liver samples per treatment using an Illumina HiSeq 2500 platform. Exposure to 34.4 ng E2/L resulted in 2,113 differentially regulated transcripts (FDR < 0.05). Functional analysis revealed upregulation of processes associated with vitellogenesis, including lipid metabolism, cellular proliferation, and ribosome biogenesis, together with a downregulation of carbohydrate metabolism. Using real-time quantitative PCR, we validated the expression of eight target genes and identified significant differences in the regulation of several known estrogen-responsive transcripts in fish exposed to the lower treatment concentrations (including esr1 and zp2.5). We successfully used RNA-Seq to identify highly conserved responses to estrogen and also identified some estrogen-responsive transcripts that have been less well characterized, including nots and tgm2l. These results demonstrate the potential application of RNA-Seq as a valuable tool for assessing mechanistic effects of pollutants in ecologically relevant species for which little genomic information is available.


Aquatic Toxicology | 2017

Hepatic transcriptional responses to copper in the three-spined stickleback are affected by their pollution exposure history

Tamsyn M. Uren Webster; Timothy Williams; Ioanna Katsiadaki; Anke Lange; Ceri Lewis; Janice A. Shears; Charles R. Tyler; Eduarda M. Santos

Some fish populations inhabiting contaminated environments show evidence of increased chemical tolerance, however the mechanisms contributing to this tolerance, and whether this is heritable, are poorly understood. We investigated the responses of two populations of wild three-spined stickleback (Gasterosteus aculeatus) with different histories of contaminant exposure to an oestrogen and copper, two widespread aquatic pollutants. Male stickleback originating from two sites, the River Aire, with a history of complex pollution discharges, and Siblyback Lake, with a history of metal contamination, were depurated and then exposed to copper (46μg/L) and the synthetic oestrogen ethinyloestradiol (22ng/L). The hepatic transcriptomic response was compared between the two populations and to a reference population with no known history of exposure (Houghton Springs, Dorset). Gene responses included those typical for both copper and oestrogen, with no discernable difference in response to oestrogen between populations. There was, however, some difference in the magnitude of response to copper between populations. Siblyback fish showed an elevated baseline transcription of genes encoding metallothioneins and a lower level of metallothionein induction following copper exposure, compared to those from the River Aire. Similarly, a further experiment with an F1 generation of Siblyback fish bred in the laboratory found evidence for elevated transcription of genes encoding metallothioneins in unexposed fish, together with an altered transcriptional response to 125μg/L copper, compared with F1 fish originating from the clean reference population exposed to the same copper concentration. These data suggest that the stickleback from Siblyback Lake have a differential response to copper, which is inherited by the F1 generation in laboratory conditions, and for which the underlying mechanism may include an elevation of baseline transcription of genes encoding metallothioneins. The genetic and/or epigenetic mechanisms contributing to this inherited alteration of metallothionein transcription have yet to be established.


Nature Climate Change | 2018

Near-future CO2 levels impair the olfactory system of a marine fish

Cosima S. Porteus; Peter C. Hubbard; Tamsyn M. Uren Webster; Ronny van Aerle; Adelino V. M. Canario; Eduarda M. Santos; Richard Wilson

Survival of marine fishes that are exposed to elevated near-future CO2 levels is threatened by their altered responses to sensory cues. Here we demonstrate a physiological and molecular mechanism in the olfactory system that helps to explain altered behaviour under elevated CO2. We combine electrophysiology measurements and transcriptomics with behavioural experiments to investigate how elevated CO2 affects the olfactory system of European sea bass (Dicentrarchus labrax). When exposed to elevated CO2 (approximately 1,000 µatm), fish must be up to 42% closer to an odour source for detection, compared with current CO2 levels (around 400 µatm), decreasing their chances of detecting food or predators. Compromised olfaction correlated with the suppression of the transcription of genes involved in synaptic strength, cell excitability and wiring of the olfactory system in response to sustained exposure to elevated CO2 levels. Our findings complement the previously proposed impairment of γ-aminobutyric acid receptors, and indicate that both the olfactory system and central brain function are compromised by elevated CO2 levels.Marine fishes exposed to elevated CO2 levels can have altered responses to sensory cues. Research now reveals a physiological and molecular mechanism in the olfactory system that helps to explain this altered behaviour under elevated CO2.


Applied and Environmental Microbiology | 2018

Interpopulation Variation in the Atlantic Salmon Microbiome Reflects Environmental and Genetic Diversity

Tamsyn M. Uren Webster; Sofia Consuegra; Matthew D. Hitchings; Carlos Garcia de Leaniz

Variation in the microbiome has a fundamental influence on host health, ecology, and evolution, but the scope and basis of this variation are not fully understood. We identified considerable variation in skin and gut microbial communities between seven wild and captive populations of Atlantic salmon, reflecting divergent environmental conditions and fish genetic diversity. In particular, we found very pronounced differences in the intestinal microbiomes of wild and hatchery-reared fish, likely reflecting differences in diet. Our results offer an insight into how the microbiome potentially contributes to the generation of local adaptations in this species and how domestication alters intestinal microbial communities, highlighting future research directions in these areas. ABSTRACT The microbiome has a crucial influence on host phenotype and is of broad interest to ecological and evolutionary research. Yet, the extent of variation that occurs in the microbiome within and between populations is unclear. We characterized the skin and gut microbiomes of seven populations of juvenile Atlantic salmon (Salmo salar) inhabiting a diverse range of environments, including hatchery-reared and wild populations. We found shared skin operational taxonomic units (OTUs) across all populations and core gut microbiota for all wild fish, but the diversity and structure of both skin and gut microbial communities were distinct between populations. There was a marked difference between the gut microbiomes of wild and captive fish. Hatchery-reared fish had lower intestinal microbial diversity, lacked core microbiota found in wild fish, and showed altered community structure and function. Skin and gut microbiomes were also less varied within captive populations, reflecting more uniform artificial rearing conditions. The surrounding water influenced the microbiome of the gut and, especially, the skin, but could not explain the degree of variation observed between populations. For both gut and skin, we found that there was greater difference in microbiome structures between more genetically distinct fish populations, and that population genetic diversity was positively correlated with microbiome diversity. However, diet is likely to be the major factor contributing to the large differences in gut microbiota between wild and captive fish. Our results highlight the scope of interpopulation variation in the Atlantic salmon microbiome and offer insights into the deterministic factors contributing to microbiome diversity and structure. IMPORTANCE Variation in the microbiome has a fundamental influence on host health, ecology, and evolution, but the scope and basis of this variation are not fully understood. We identified considerable variation in skin and gut microbial communities between seven wild and captive populations of Atlantic salmon, reflecting divergent environmental conditions and fish genetic diversity. In particular, we found very pronounced differences in the intestinal microbiomes of wild and hatchery-reared fish, likely reflecting differences in diet. Our results offer an insight into how the microbiome potentially contributes to the generation of local adaptations in this species and how domestication alters intestinal microbial communities, highlighting future research directions in these areas.


bioRxiv | 2018

Contrasting effects of acute and chronic stress on the transcriptome, epigenome, and immune response of Atlantic salmon

Tamsyn M. Uren Webster; Deiene Rodriguez-Barreto; Samuel A.M. Martin; Cock van Oosterhout; Pablo Orozco-terWengel; Joanne Cable; Alastair Hamilton; Carlos Garcia de Leaniz; Sofia Consuegra

Early-life stress can have long-lasting effects on immunity, but the underlying molecular mechanisms are unclear. We examined the effects of acute stress (cold-shock during embryogenesis) and chronic stress (absence of tank enrichment during larval-stage) on the gill transcriptome and methylome of Atlantic salmon four months after hatching. While only chronic stress induced pronounced transcriptional effects, both acute and chronic stress caused lasting, and contrasting, changes in the methylome. Crucially, we found that acute stress enhanced immune response to a pathogenic challenge (lipopolysaccharide), while chronic stress suppressed it. We identified stress-induced changes in promoter or gene-body methylation that were associated with altered expression for a small proportion of genes, and also evidence of wider epigenetic regulation within signalling pathways involved in immune response. Our study suggests that early-life stress can affect immuno-competence through epigenetic mechanisms, a finding that could open the way for improved stress and disease management of farmed fish.


Genome Biology and Evolution | 2018

Immune-Related Transcriptional Responses to Parasitic Infection in a Naturally Inbred Fish: Roles of Genotype and Individual Variation

Rebecca Pawluk; Tamsyn M. Uren Webster; Joanne Cable; Carlos Garcia de Leaniz; Sofia Consuegra

Abstract Parasites are strong drivers of evolutionary change and the genetic variation of both host and parasite populations can co-evolve as a function of parasite virulence and host resistance. The role of transcriptome variation in specific interactions between host and parasite genotypes has been less studied and can be confounded by differences in genetic variation. We employed two naturally inbred lines of a self-fertilizing fish to estimate the role of host genotype in the transcriptome response to parasite infection using RNA-seq. In addition, we targeted several differentially expressed immune-related genes to further investigate the relative role of individual variation in the immune response using RT-qPCR, taking advantage of the genomic uniformity of the self-fertilizing lines. We found significant differences in gene expression between lines in response to infection both in the transcriptome and in individual gene RT-qPCR analyses. Individual RT-qPCR analyses of gene expression identified significant variance differences between lines for six genes but only for three genes between infected and control fish. Our results indicate that although the genetic background plays an important role in the transcriptome response to parasites, it cannot fully explain individual differences within genetically homogeneous lines, which can be important for determining the response to parasites.

Collaboration


Dive into the Tamsyn M. Uren Webster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cosima S. Porteus

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Wilson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge