Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tan-Yun Cheng is active.

Publication


Featured researches published by Tan-Yun Cheng.


Nature | 2005

Apolipoprotein-mediated pathways of lipid antigen presentation

Peter van den Elzen; Salil Garg; Luis León; Manfred Brigl; Elizabeth A. Leadbetter; Jenny E. Gumperz; Chris C. Dascher; Tan-Yun Cheng; Frank M. Sacks; Petr A. Illarionov; Gurdyal S. Besra; Sally C. Kent; D. Branch Moody; Michael B. Brenner

Peptide antigens are presented to T cells by major histocompatibility complex (MHC) molecules, with endogenous peptides presented by MHC class I and exogenous peptides presented by MHC class II. In contrast to the MHC system, CD1 molecules bind lipid antigens that are presented at the antigen-presenting cell (APC) surface to lipid antigen-reactive T cells. Because CD1 molecules survey endocytic compartments, it is self-evident that they encounter antigens from extracellular sources. However, the mechanisms of exogenous lipid antigen delivery to CD1-antigen-loading compartments are not known. Serum apolipoproteins are mediators of extracellular lipid transport for metabolic needs. Here we define the pathways mediating markedly efficient exogenous lipid antigen delivery by apolipoproteins to achieve T-cell activation. Apolipoprotein E binds lipid antigens and delivers them by receptor-mediated uptake into endosomal compartments containing CD1 in APCs. Apolipoprotein E mediates the presentation of serum-borne lipid antigens and can be secreted by APCs as a mechanism to survey the local environment to capture antigens or to transfer microbial lipids from infected cells to bystander APCs. Thus, the immune system has co-opted a component of lipid metabolism to develop immunological responses to lipid antigens.


PLOS Computational Biology | 2009

Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production.

Caroline Colijn; Aaron Brandes; Jeremy Zucker; Desmond S. Lun; Brian Weiner; Maha R. Farhat; Tan-Yun Cheng; D. Branch Moody; Megan Murray; James E. Galagan

Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression), extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB). Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition

M. Sloan Siegrist; Meera Unnikrishnan; Matthew J. McConnell; Mark L. Borowsky; Tan-Yun Cheng; Noman Siddiqi; Sarah M. Fortune; D. Branch Moody; Eric J. Rubin

The Esx secretion pathway is conserved across Gram-positive bacteria. Esx-1, the best-characterized system, is required for virulence of Mycobacterium tuberculosis, although its precise function during infection remains unclear. Esx-3, a paralogous system present in all mycobacterial species, is required for growth in vitro. Here, we demonstrate that mycobacteria lacking Esx-3 are defective in acquiring iron. To compete for the limited iron available in the host and the environment, these organisms use mycobactin, high-affinity iron-binding molecules. In the absence of Esx-3, mycobacteria synthesize mycobactin but are unable to use the bound iron and are impaired severely for growth during macrophage infection. Mycobacteria thus require a specialized secretion system for acquiring iron from siderophores.


Nature Immunology | 2010

CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire

Annemieke de Jong; Victor Pena-Cruz; Tan-Yun Cheng; Rachael A. Clark; Ildiko Van Rhijn; D. Branch Moody

CD1 activates T cells, but the function and size of the possible human T cell repertoires that recognize each of the CD1 antigen-presenting molecules remain unknown. Using an experimental system that bypasses major histocompatibility complex (MHC) restriction and the requirement for defined antigens, we show that polyclonal T cells responded at higher rates to cells expressing CD1a than to those expressing CD1b, CD1c or CD1d. Unlike the repertoire of invariant natural killer T (NKT) cells, the CD1a-autoreactive repertoire contained diverse T cell antigen receptors (TCRs). Functionally, many CD1a-autoreactive T cells homed to skin, where they produced interleukin 22 (IL-22) in response to CD1a on Langerhans cells. The strong and frequent responses among genetically diverse donors define CD1a-autoreactive cells as a normal part of the human T cell repertoire and CD1a as a target of the TH22 subset of helper T cells.


Nature Immunology | 2002

Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation

D. Branch Moody; Volker Briken; Tan-Yun Cheng; Carme Roura-Mir; Mark R. Guy; David Geho; Mark L. Tykocinski; Gurdyal S. Besra; Steven A. Porcelli

CD1 proteins present various glycolipid antigens to T cells, but the cellular mechanisms that control which particular glycolipids generate T cell responses are not understood. We show here that T cell recognition of glucose monomycolate antigens with long (C80) alkyl chains involves the delivery of CD1b proteins and antigens to late endosomes in a process that takes several hours. In contrast, analogs of the same antigen with shorter (C32) alkyl chains are rapidly, but inefficiently, presented by cell surface CD1b proteins. Dendritic cells (DCs) preferentially present long-chain glycolipids, which results, in part, from their rapid internalization and selective delivery of antigens to endosomal compartments. Nonprofessional antigen-presenting cells, however, preferentially present short-chain glycolipids because of their lack of prominent endosomal presentation pathways. Because long alkyl chain length distinguishes certain microbial glycolipids from common mammalian glycolipids, these findings suggest that DCs use a specialized endosomal-loading pathway to promote preferential recognition of glycolipids with a more intrinsically foreign structure.


Journal of Immunology | 2005

Mycobacterium tuberculosis Regulates CD1 Antigen Presentation Pathways through TLR-2

Carme Roura-Mir; Lisheng Wang; Tan-Yun Cheng; Isamu Matsunaga; Christopher C. Dascher; Stanford L. Peng; Matthew J. Fenton; Carsten J. Kirschning; D. Branch Moody

Mycobacterium tuberculosis remains a major pathogen of worldwide importance, which releases lipid Ags that are presented to human T cells during the course of tuberculosis infections. Here we report that cellular infection with live M. tuberculosis or exposure to mycobacterial cell wall products converted CD1− myeloid precursors into competent APCs that expressed group 1 CD1 proteins (CD1a, CD1b, and CD1c). The appearance of group 1 CD1 proteins at the surface of infected or activated cells occurred via transcriptional regulation, and new CD1 protein synthesis and was accompanied by down-regulation of CD1d transcripts and protein. Isolation of CD1-inducing factors from M. tuberculosis using normal phase chromatography, as well as the use of purified natural and synthetic compounds, showed that this process involved polar lipids that signaled through TLR-2, and we found that TLR-2 was necessary for the up-regulation of CD1 protein expression. Thus, mycobacterial cell wall lipids provide two distinct signals for the activation of lipid-reactive T cells: lipid Ags that activate T cell receptors and lipid adjuvants that activate APCs through TLR-2. These dual activation signals may represent a system for selectively promoting the presentation of exogenous foreign lipids by those myeloid APCs, which come into direct contact with pathogens.


Chemistry & Biology | 2011

A Comparative Lipidomics Platform for Chemotaxonomic Analysis of Mycobacterium tuberculosis

Emilie Layre; Lindsay Sweet; Sunhee Hong; Cressida A. Madigan; Danielle Desjardins; David C. Young; Tan-Yun Cheng; John W. Annand; Keunpyo Kim; Isdore Chola Shamputa; Matthew J. McConnell; C. Anthony Debono; Samuel M. Behar; Adriaan J. Minnaard; Megan Murray; Clifton E. Barry; Isamu Matsunaga; D. Branch Moody

The lipidic envelope of Mycobacterium tuberculosis promotes virulence in many ways, so we developed a lipidomics platform for a broad survey of cell walls. Here we report two new databases (MycoMass, MycoMap), 30 lipid fine maps, and mass spectrometry datasets that comprise a static lipidome. Further, by rapidly regenerating lipidomic datasets during biological processes, comparative lipidomics provides statistically valid, organism-wide comparisons that broadly assess lipid changes during infection or among clinical strains of mycobacteria. Using stringent data filters, we tracked more than 5,000 molecular features in parallel with few or no false-positive molecular discoveries. The low error rates allowed chemotaxonomic analyses of mycobacteria, which describe the extent of chemical change in each strain and identified particular strain-specific molecules for use as biomarkers.


Nature Immunology | 2014

CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens

Annemieke de Jong; Tan-Yun Cheng; Shouxiong Huang; Stephanie Gras; Richard W. Birkinshaw; Anne Kasmar; Ildiko Van Rhijn; Victor Pena-Cruz; Daniel T Ruan; John D. Altman; Jamie Rossjohn; D. Branch Moody

T cells autoreactive to the antigen-presenting molecule CD1a are common in human blood and skin, but the search for natural autoantigens has been confounded by background T cell responses to CD1 proteins and self lipids. After capturing CD1a-lipid complexes, we gently eluted ligands while preserving non–ligand-bound CD1a for testing lipids from tissues. CD1a released hundreds of ligands of two types. Inhibitory ligands were ubiquitous membrane lipids with polar head groups, whereas stimulatory compounds were apolar oils. We identified squalene and wax esters, which naturally accumulate in epidermis and sebum, as autoantigens presented by CD1a. The activation of T cells by skin oils suggested that headless mini-antigens nest within CD1a and displace non-antigenic resident lipids with large head groups. Oily autoantigens naturally coat the surface of the skin; thus, this points to a previously unknown mechanism of barrier immunity.


Journal of Bacteriology | 2006

Mycobacterium tuberculosis SigM Positively Regulates Esx Secreted Protein and Nonribosomal Peptide Synthetase Genes and Down Regulates Virulence-Associated Surface Lipid Synthesis

Sahadevan Raman; Xiaoling Puyang; Tan-Yun Cheng; David C. Young; D. Branch Moody; Robert N. Husson

The Mycobacterium tuberculosis genome encodes 12 alternative sigma factors, several of which regulate stress responses and are required for virulence in animal models of acute infection. In this work we investigated M. tuberculosis SigM, a member of the extracytoplasmic function subfamily of alternative sigma factors. This sigma factor is expressed at low levels in vitro and does not appear to function in stress response regulation. Instead, SigM positively regulates genes required for the synthesis of surface or secreted molecules. Among these are genes encoding two pairs of Esx secreted proteins, a multisubunit nonribosomal peptide synthetase operon, and genes encoding two members of the proline-proline-glutamate (PPE) family of proteins. Genes up regulated in a sigM mutant strain include a different PPE gene, as well as several genes involved in surface lipid synthesis. Among these are genes involved in synthesis of phthiocerol dimycocerosate (PDIM), a surface lipid critical for virulence during acute infection, and the kasA-kasB operon, which is required for mycolic acid synthesis. Analysis of surface lipids showed that PDIM synthesis is increased in a sigM-disrupted strain and is undetectable in a sigM overexpression strain. These findings demonstrate that SigM positively and negatively regulates cell surface and secreted molecules that are likely to function in host-pathogen interactions.


Blood | 2008

IgG regulates the CD1 expression profile and lipid antigen-presenting function in human dendritic cells via FcγRIIa

Anna Smed-Sörensen; Markus Moll; Tan-Yun Cheng; Karin Loré; Anna-Carin Norlin; Leif Perbeck; D. Branch Moody; Anna-Lena Spetz; Johan K. Sandberg

Dendritic cells (DCs) process and present bacterial and endogenous lipid antigens in complex with CD1 molecules to T cells and invariant natural killer T (NKT) cells. However, different types of DCs, such as blood myeloid DCs and skin Langerhans cells, exhibit distinct patterns of CD1a, CD1b, CD1c, and CD1d expression. The regulation of such differences is incompletely understood. Here, we initially observed that monocyte-derived DCs cultured in an immunoglobulin-rich milieu expressed CD1d but not CD1a, CD1b, and CD1c, whereas DCs cultured in the presence of low levels of immunoglobulins had an opposite CD1 profile. Based on this, we tested the possibility that immunoglobulins play a central role in determining these differences. IgG depletion and intravenous immunoglobulin (IVIg) add-in experiments strongly supported a role for IgG in directing the CD1 expression profile. Blocking experiments indicated that this effect was mediated by FcgammaRIIa (CD32a), and quantitative polymerase chain reaction data demonstrated that regulation of the CD1 profile occurred at the gene expression level. Finally, the ability of DCs to activate CD1-restricted NKT cells and T cells was determined by this regulatory effect of IgG. Our data demonstrate an important role for FcgammaRIIa in regulating the CD1 antigen presentation machinery of human DCs.

Collaboration


Dive into the Tan-Yun Cheng's collaboration.

Top Co-Authors

Avatar

D. Branch Moody

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

David C. Young

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ildiko Van Rhijn

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Annemieke de Jong

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Emilie Layre

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Kasmar

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael B. Brenner

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge