Tang Guoan
Nanjing Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tang Guoan.
Science China-technological Sciences | 2008
Tang Guoan; Li Fayuan; Liu Xuejun; Long Yi; Yang Xin
A new concept dealing with digital analysis of loess terrain, slope spectrum, is presented and discussed in this paper, by introducing its characteristic, representation and extracting method from DEMs. Using 48 geomorphological units in different parts of the loess as test areas and 5 m-resolution DEMs as original test data, the quantitative depiction and spatial distribution of slope spectrum in China’s Loess Plateau have been studied on the basis of a series of carefully-designed experiments. In addition, initial experiment indicates a strong relationship between the slope spectrum and the loess landform types, displaying a potential importance of the slope spectrum in geomorphological studies. Based on the slope spectrums derived from the 25 m-resolution DEM data in whole loess terrain in northern part of Shaanxi, 13 slope spectrum indices were extracted and integrated into a comprehensive layer with image integration method. Based on that, a series of unsupervised classifications was applied in order to make a landform classification in northern Shaanxi Loess Plateau. Experimental results show that the slope spectrum analysis is an effective method in revealing the macro landform features. A continuous change of slope spectrum from south to north in northern Shaanxi Loess Plateau shows an obvious spatial distribution of different loess landforms. This also proves the great significance of the slope spectrum method in describing the terrain roughness and landform evolution as well as a further understanding on landform genesis and spatial distribution rule of different landforms in the Loess Plateau.
Science China-earth Sciences | 2014
Xiong Liyang; Tang Guoan; Yuan Baoyin; Lu Zhongchen; Li Fayuan; Zhang Lei
The influence of pre-quaternary underlying terrain on the formation of loess landforms, i.e., the geomorphological inheritance issue, is a focus in studies of loess landforms. On the basis of multi-source information, we used GIS spatial analysis methods to construct a simulated digital elevation model of a pre-quaternary paleotopographic surface in a severe soil erosion area of the Loess Plateau. To reveal the spatial relationship between underlying paleotopography and modern terrain, an XY scatter diagram, hypsometric curve, gradient and concavity of terrain profiles are used in the experiments. The experiments show that the altitude, gradient and concavity results have significant linear positive correlation between both terrains, which shows a relatively strong landform inheritance relationship, particularly in the intact and complete loess deposit areas. Despite the current surface appearing somewhat changed from the original shape of the underlying terrain under different erosion forces, we reveal that the modern terrain generally smoothes the topographic relief of underlying terrain in the loess deposition process. Our results deepen understanding of the characteristics of geomorphological inheritance in the formation and evolution of loess landforms.
Journal of Geographical Sciences | 2007
Yang Xin; Tang Guoan; Xiao Chenchao; Deng Fengdong
In mountainous area, spatial interpolation is the traditional method to calculate air temperature by use of observed temperature data. Due to lack of sufficient observation data in mountainous areas many precise interpolation methods could give only coarse result which could not meet the demand of precision agriculture and local climate exploration. Based on DEMs of 25 m resolution, a reversed model is constructed, with which temperature is simulated to the corresponding slope unit from the solar radiation. Taking Yaoxian county as a test area, and mean monthly temperature data as basic information sources, which are collected from 15 weather stations around Yaoxian county in Shaanxi province from the year of 1970 to 2000, a simulation for the solar radiation cell by cell is completed. By simulating solar radiation at each slope and flat cell unit, the terrain revised temperature model could be realized. A comparison between the simulated temperature and the radiation temperature from TM6 thermal infrared image shows that the terrain improved model gets a finer temperature distribution at local level. The accuracy of simulated temperature in mountainous area is higher than it is in flat area.
Journal of Geographical Sciences | 2015
Tang Guoan; Song Xiaodong; Li Fayuan; Zhang Yong; Xiong Liyang
Slope spectrum has been proved to be a significant methodology in revealing geomorphological features in the study of Chinese loess terrain. The determination of critical areas in deriving slope spectra is an indispensable task. Along with the increase in the size of the study area, the derived spectra are becoming more and more alike, such that their differences can be ignored in favor of a standard. Subsequently, the test size is defined as the Slope Spectrum Critical Area (SSCA). SSCA is not only the foundation of the slope spectrum calculation but also, to some extent, a reflection of geomorphological development of loess relief. High resolution DEMs are important in extracting the slope spectrum. A set of 48 DEMs with different landform areas of the Loess Plateau in northern Shaanxi province was selected for the experiment. The spatial distribution of SSCA is investigated with a geo-statistical analysis method, resulting in values ranging from 6.18 km2 to 35.1 km2. Primary experimental results show that the spatial distribution of SSCA is correlated with the spatial distribution of the soil erosion intensity, to a certain extent reflecting the terrain complexity. The critical area of the slope spectrum presents a spatial variation trend of weak-strong-weak from north to south. Four terrain parameters, gully density, slope skewness, terrain driving force (Td) and slope of slope (SOS), were chosen as indicators. There exists a good exponential function relationship between SSCA and gully density, terrain driving force (Td) and SOS and a logarithmic function relationship between SSCA and slope skewness. Slope skewness increases, and gully density, terrain driving force and SOS decrease with increasing SSCA. SSCA can be utilized as a discriminating factor to identify loess landforms, in that spatial distributions of SSCA and the evolution of loess landforms are correlative. Following the evolution of a loess landform from tableland to gully-hilly region, this also proves that SSCA can represent the development degree of local landforms. The critical stable regions of the Loess Plateau represent the degree of development of loess landforms. Its chief significance is that the perception of stable areas can be used to determine the minimal geographical unit.
Journal of Geographical Sciences | 2017
Lv Guonian; Xiong Liyang; Chen Min; Tang Guoan; Sheng Yehua; Liu Xuejun; Song Zhiyao; Lu Yuqi; Yu Zhaoyuan; Zhang Ka; Wang Meizhen
Geomorphometry, the science of digital terrain analysis (DTA), is an important focus of research in both geomorphology and geographical information science (GIS). Given that 70% of China is mountainous, geomorphological research is popular among Chinese scholars, and the development of GIS over the last 30 years has led to significant advances in geomorphometric research. In this paper, we review Chinese progress in geomorphometry based on the published literature. There are three major areas of progress: digital terrain modelling methods, DTA methods, and applications of digital terrain models (DTMs). First, traditional vector- and raster-based terrain modelling methods, including the assessment of uncertainty, have received widespread attention. New terrain modelling methods such as unified raster and vector, high-fidelity, and real-time dynamic geographical scene modelling have also attracted research attention and are now a major focus of digital terrain modelling research. Second, in addition to the popular DTA methods based on topographical derivatives, geomorphological features, and hydrological factors extracted from DTMs, DTA methods have been extended to include analyses of the structure of underlying strata, ocean surface features and even socioeconomic spatial structures. Third, DTMs have been applied to fields including global climate change, analysis of various typical regions, lunar surface and other related fields. Clearly, Chinese scholars have made significant progress in geomorphometry. Chinese scholars have had the greatest international impact in areas including high-fidelity digital terrain modelling and DTM-based regional geomorphological analysis, particularly in the Loess Plateau and the Tibetan Plateau regions.
Science China-earth Sciences | 2017
Xiong Liyang; Tang Guoan; Zhu A-Xing; Yuan Baoyin; Lu BinYing; Dang TianMin
The inhomogeneous and non-flat paleotopography in a depositional landform area profoundly controls the process of modern gully evolution and shapes the structure of a gully network. However, this controlling effect of paleotopography on modern gully evolution is mostly ignored because of the difficulties in paleotopography reconstruction. In this study, loess area in China is selected as case area for its typical depositional landform area and inhomogeneous and non-flat paleotopography during the Quaternary. The paleotopography underlying loess is considered while evaluating its controlling effects on the gully evolutionary process. On the basis of the geophysical prospecting, detailed geological information, and high-resolution digital elevation model, we reconstruct the pre-Quaternary paleotopographic surface in the case area. Comparative analysis is conducted to reveal the modern gully evolution in relation to the paleotopography. Results show that the concave area of the paleotopography acts as the basement of the high-order modern gully evolution in the hilly-gully area, although this concave area can be covered and buried by the loess depositional process during the Quaternary. A significant controlling effect of paleotopography on high-order modern gully evolution can be observed in a depositional landform with a hilly-gully underlying topography, whereas a relatively weak controlling effect exists in a flat underlying topographical area because of the strong horizontal shift effect of gully formation process. Several low-order modern gullies also exist and limit the controlling effect of paleotopography. These results reveal a controlled high-order modern gully evolutionary process and a rather dynamic low-order modern gully evolutionary process in the hilly-gully area. These results also help us understand the variations in different modern gully evolution in relation to paleotopography and the different management schemes for soil conservation and ecological restoration during the gully evolutionary process.
Progress in geography | 2011
Zhang Ting; Tang Guoan; Wang Chun; Long Yi; Wu Liang-Chao; Wang Zheng
Geomatics and Information Science of Wuhan University | 2011
Yan Shi-jiang; Tang Guoan; Li Fayuan; Dong Youfu
Geo-information Science | 2006
Tang Guoan
Progress in geography | 2010
Chen Yong-gang; Tang Guoan; Zhou Yi; Li Fayuan; Yan Shi-jiang; Zhang Lei