Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tania Betancourt is active.

Publication


Featured researches published by Tania Betancourt.


Advanced Drug Delivery Reviews | 2008

Active targeting schemes for nanoparticle systems in cancer therapeutics.

James D. Byrne; Tania Betancourt; Lisa Brannon-Peppas

The objective of this review is to outline current major cancer targets for nanoparticle systems and give insight into the direction of the field. The major targeting strategies that have been used for the delivery of therapeutic or imaging agents to cancer have been broken into three sections. These sections are angiogenesis-associated targeting, targeting to uncontrolled cell proliferation markers, and tumor cell targeting. The targeting schemes explored for many of the reported nanoparticle systems suggest the great potential of targeted delivery to revolutionize cancer treatment.


Nanomedicine: Nanotechnology, Biology and Medicine | 2007

Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation

Tania Betancourt; Brandon Brown; Lisa Brannon-Peppas

AIMS The lack of specificity of chemotherapeutic agents to cancer tissue commonly leads to dose-limiting side effects and poor therapeutic results. Drug delivery systems promise to improve the deficiencies of chemotherapeutic treatment by modifying the biodistribution and pharmacokinetics of the drug in vivo. Here, we report the preparation, characterization and in vitro evaluation of a carrier for the chemotherapeutic drug doxorubicin based on acid-capped poly(lactic-co-glycolic acid) nanoparticles. METHODS Doxorubicin-loaded nanoparticles were prepared by nanoprecipitation with bovine serum albumin as the stabilizer. Nanoparticles were characterized and their interaction with MDA-MB-231 breast cancer cells was examined with confocal microscopy and a toxicological assay. RESULTS Spherical particles with an average diameter of 230 nm, a zeta-potential of -45 mV and a maximum drug loading of 5 wt% were prepared. Doxorubicin was found to be quickly released at endolysosomal pH of 4.0 but was released at a slower rate at pH 7.4. Nanoparticles were found to deliver the drug into cells quickly and in higher quantity than when presented in solution and were found to result in a therapeutic efficacy comparable to the free drug. DISCUSSION Nanoprecipitation was found to be a promising method for the preparation of nanoparticles with relatively high doxorubicin loading. The pH-dependent release behavior is discussed to possibly be a result of accelerated degradation of the polymer and decreasing ionic interaction between the drug and the polymer at acidic pH. Additional studies are needed to determine why increased nuclear localization of the drug when delivered in the form of nanoparticles did not result in increased therapeutic efficacy in vitro. CONCLUSION Nanoparticles formulated by nanoprecipitation of acid-ended poly(lactic-co-glycolic acid) were found to be able to control the release of doxorubicin in a pH-dependent manner and to effectively deliver high payloads of the drug in an active form to MDA-MB-231 breast cancer cells.


Journal of Biomedical Materials Research Part A | 2009

PEGylation strategies for active targeting of PLA/PLGA nanoparticles

Tania Betancourt; James D. Byrne; Nicole Sunaryo; Spencer W. Crowder; Meena Kadapakkam; Shefali Patel; Shelly L. Casciato; Lisa Brannon-Peppas

This work evaluates various techniques for the incorporation of poly(ethylene glycol) (PEG) onto biodegradable nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) or poly(lactic acid) (PLA) with the purpose of providing a functional site for surface conjugation of targeting agents and for improving surface properties. The techniques compared were based on NP preparation with blends of PLGA and poloxamer or with block copolymers of PLGA/PLA with PEG. Blending of PLGA with poloxamer 407 resulted in the incorporation of the latter to up to a 43 wt % content. Direct conjugation of heterofunctional NH2-PEG-COOH to the surface of premade NPs was not highly effective. Preparation of copolymers of PLGA with PEG was determined to be more effective and versatile by polymerization of lactide and glycolide dimers onto the hydroxyl group of heterofunctional OH-PEG-COOH than by conjugation of the premade polymers with carbodiimide chemistry. NPs prepared with these copolymers confirmed the surface localization of PEG and proved to be useful for conjugation of mouse immumoglobulin as a model targeting agent.


Journal of Biomedical Materials Research Part A | 2009

Characterization of pH‐responsive hydrogels of poly(itaconic acid‐g‐ethylene glycol) prepared by UV‐initiated free radical polymerization as biomaterials for oral delivery of bioactive agents

Tania Betancourt; Juan Pardo; Ken Soo; Nicholas A. Peppas

Effective oral delivery of proteins is impeded by steep pH gradients and proteolytic enzymes in the gastrointestinal tract, as well as low absorption of the proteins into the bloodstream because of their size, charge, or solubility. In this work, pH-responsive complexation hydrogels of poly(itaconic acid) (PIA) with poly(ethylene glycol) (PEG) grafts were synthesized for applications in oral drug delivery. These hydrogels were expected to be in collapsed configuration at low pH because of hydrogen bonding between PIA carboxyl groups and PEG, and to swell with increasing pH because of charge repulsion between deprotonated carboxylic acid groups. Hydrogels were prepared by UV-initiated free radical polymerization using tetraethylene glycol as the crosslinking agent and Irgacure 2959 as the initiator. The effect of monomer ratios, crosslinking ratio, and solvent amount on the properties of the hydrogels were investigated. The composition of the hydrogels was confirmed by Fourier transform infrared spectroscopy. Equilibrium swelling studies in the pH range of 1.2-7 revealed that the extent of swelling increased with increasing pH up to a pH of about 6, when no further carboxylic acid deprotonation occurred. Studies in Caco-2 colorectal carcinoma cells confirmed the cytocompatibility of these materials at concentrations of up to 5 mg/mL.


Journal of Medicinal Chemistry | 2013

Exploring Natural Product Chemistry and Biology with Multicomponent Reactions. 5. Discovery of a Novel Tubulin-Targeting Scaffold Derived from the Rigidin Family of Marine Alkaloids

Liliya V. Frolova; Igor V. Magedov; Anntherese E. Romero; Menuka Karki; Isaiah I. Otero; Kathryn Hayden; Nikolai M. Evdokimov; Laetitia Moreno Y Banuls; Shiva K. Rastogi; Ross W.R. Smith; Shi-Long S.-L. Lu; Robert Kiss; Charles B. Shuster; Ernest Hamel; Tania Betancourt; Snezna Rogelj; Alexander Kornienko

We developed synthetic chemistry to access the marine alkaloid rigidins and over 40 synthetic analogues based on the 7-deazaxanthine, 7-deazaadenine, 7-deazapurine, and 7-deazahypoxanthine skeletons. Analogues based on the 7-deazahypoxanthine skeleton exhibited nanomolar potencies against cell lines representing cancers with dismal prognoses, tumor metastases, and multidrug resistant cells. Studies aimed at elucidating the mode(s) of action of the 7-deazahypoxanthines in cancer cells revealed that they inhibited in vitro tubulin polymerization and disorganized microtubules in live HeLa cells. Experiments evaluating the effects of the 7-deazahypoxanthines on the binding of [(3)H]colchicine to tubulin identified the colchicine site on tubulin as the most likely target for these compounds in cancer cells. Because many microtubule-targeting compounds are successfully used to fight cancer in the clinic, we believe the new chemical class of antitubulin agents represented by the 7-deazahypoxanthine rigidin analogues have significant potential as new anticancer agents.


Journal of Materials Science: Materials in Medicine | 2009

Rhodamine-loaded poly(lactic-co-glycolic acid) nanoparticles for investigation of in vitro interactions with breast cancer cells.

Tania Betancourt; Kunal Shah; Lisa Brannon-Peppas

Nanoparticle-based drug delivery systems are considered promising for the delivery of imaging agents and drugs for the detection and treatment of illnesses, including cancer. Investigation of nanoparticle interactions with the diseased cells can lead to better designs. In this work, poly(lactic-co-glycolic acid) nanoparticles loaded with rhodamine 6G were prepared by nanoprecipitation with high encapsulation efficiency. In vitro release studies demonstrated that rhodamine escaped from the nanoparticles at a very slow rate at physiological pH, thus making it ideal for imaging studies. At acidic pH this agent was released quickly, suggesting charge interactions between the polymer and rhodamine. Microscopy and flow cytometry studies show higher uptake in MDA-MB-231 breast cancer cells when exposed to rhodamine-loaded nanoparticles than to rhodamine in solution.


Archive | 2009

Controlled Release and Nanotechnology

Tania Betancourt; Amber L. Doiron; Kimberly Homan; Lisa Brannon-Peppas

Nanosized controlled release systems for drug delivery are segregated into several categories including polymeric nanoparticles, liposomes, solid lipid nanoparticles, polymeric micelles, and dendrimers. This topic is extensive and as such is only briefly reviewed here. More detailed information may be found in more focused chapters of this book. With this in mind, this chapter will provide an overview of nanoparticulate systems, followed by some of the more interesting opportunities and applications of nanotechnology in controlled release: metal–organic systems, nanotubes, responsive systems, and personal care products. The use of a drug as a therapeutic agent is often a delicate balance between therapeutic efficacy and detrimental side effects including toxicity. The control of the amount of drug delivered over time and the spatial localization of that delivery are paramount in overcoming the challenges of providing optimal therapy. This challenge drives the design of various drug delivery strategies that strive to revolutionize the way drugs exert their actions. Much of this attention has focused on nanoparticles due to their small size, relatively high surface area, influence on biodistribution, ability to make drugs available for intravascular delivery, their stabilizing effect on therapeutic agents, and the capability of sustaining release of the agent (Mainardes and Silva 2004). All these elements ultimately lead to more effective delivery of the active agent to a desired physiological or pathophysiological location. Modification of the nanocarrier composition largely controls the release of the active agent from the carrier. This can be accomplished by using various types of polymers or lipids, changing the molecular weight of those components, or changing the surface characteristics such as by crosslinking or adding a separate component like poly (ethylene glycol). In addition, more specific modifications can be made in order to achieve the optimal controlled drug release from the nanodevice. The following reviews the major classes of nanoscale drug delivery devices.


Materials Science and Engineering: C | 2016

Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite.

Abbas Fahami; Gary W. Beall; Tania Betancourt

Chlorine and fluorine substituted hydroxyapatites (HA-Cl-F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20±5 to 70±5nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl-F will lead to the formation of new apatite particles and therefore be a potential implant material.


International Journal of Nanomedicine | 2017

Conductive polymer-based nanoparticles for laser-mediated photothermal ablation of cancer: synthesis, characterization, and in vitro evaluation

Travis Cantu; Kyle Walsh; Varun P. Pattani; Austin J. Moy; James W. Tunnell; Jennifer A. Irvin; Tania Betancourt

Laser-mediated photothermal ablation of cancer cells aided by photothermal agents is a promising strategy for localized, externally controlled cancer treatment. We report the synthesis, characterization, and in vitro evaluation of conductive polymeric nanoparticles (CPNPs) of poly(diethyl-4,4′-{[2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-1,4-phenylene] bis(oxy)}dibutanoate) (P1) and poly(3,4-ethylenedioxythiophene) (PEDOT) stabilized with 4-dodecylbenzenesulfonic acid and poly(4-styrenesulfonic acid-co-maleic acid) as photothermal ablation agents. The nanoparticles were prepared by oxidative-emulsion polymerization, yielding stable aqueous suspensions of spherical particles of <100 nm diameter as determined by dynamic light scattering and electron microscopy. Both types of nanoparticles show strong absorption of light in the near infrared region, with absorption peaks at 780 nm for P1 and 750 nm for PEDOT, as well as high photothermal conversion efficiencies (~50%), that is higher than commercially available gold-based photothermal ablation agents. The nanoparticles show significant photostability as determined by their ability to achieve consistent temperatures and to maintain their morphology upon repeated cycles of laser irradiation. In vitro studies in MDA-MB-231 breast cancer cells demonstrate the cytocompatibility of the CPNPs and their ability to mediate complete cancer cell ablation upon irradiation with an 808-nm laser, thereby establishing the potential of these systems as agents for laser-induced photothermal therapy.


Medicinal Research Reviews | 2017

Marine Mollusk‐Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance

Maria Letizia Ciavatta; Florence Lefranc; Marianna Carbone; Ernesto Mollo; Margherita Gavagnin; Tania Betancourt; Ramesh Dasari; Alexander Kornienko; Robert Kiss

The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as “chemotaxonomic markers” for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk‐derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen‐containing compounds. The “promise” of a mollusk‐derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk‐derived anticancer agents and solutions to their procurement in quantity.

Collaboration


Dive into the Tania Betancourt's collaboration.

Top Co-Authors

Avatar

Lisa Brannon-Peppas

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyle Walsh

Texas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amber L. Doiron

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Austin J. Moy

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Charles B. Shuster

New Mexico State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge