Tania Carrillo-Roa
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tania Carrillo-Roa.
Translational Psychiatry | 2013
Enda M. Byrne; Tania Carrillo-Roa; Anjali K. Henders; Lisa Bowdler; Allan F. McRae; A. C. Heath; Nicholas G. Martin; Grant W. Montgomery; Lutz Krause; Naomi R. Wray
Our understanding of major depressive disorder (MDD) has focused on the influence of genetic variation and environmental risk factors. Growing evidence suggests the additional role of epigenetic mechanisms influencing susceptibility for complex traits. DNA sequence within discordant monozygotic twin (MZT) pairs is virtually identical; thus, they represent a powerful design for studying the contribution of epigenetic factors to disease liability. The aim of this study was to investigate whether specific methylation profiles in white blood cells could contribute to the aetiology of MDD. Participants were drawn from the Queensland Twin Registry and comprised 12 MZT pairs discordant for MDD and 12 MZT pairs concordant for no MDD and low neuroticism. Bisulphite treatment and genome-wide interrogation of differentially methylated CpG sites using the Illumina Human Methylation 450 BeadChip were performed in WBC-derived DNA. No overall difference in mean global methylation between cases and their unaffected co-twins was found; however, the differences in females was significant (P=0.005). The difference in variance across all probes between affected and unaffected twins was highly significant (P<2.2 × 10−16), with 52.4% of probes having higher variance in cases (binomial P-value<2.2 × 10−16). No significant differences in methylation were observed between discordant MZT pairs and their matched concordant MZT (permutation minimum P=0.11) at any individual probe. Larger samples are likely to be needed to identify true associations between methylation differences at specific CpG sites.
Nature Communications | 2016
Lotte C. Houtepen; Christiaan H. Vinkers; Tania Carrillo-Roa; Marieke Hiemstra; Pol A. C. van Lier; Wim Meeus; Susan J. T. Branje; Christine Heim; Charles B. Nemeroff; Jonathan Mill; Leonard C. Schalkwyk; Menno P. Creyghton; René S. Kahn; Marian Joëls; Elisabeth B. Binder; Marco P. Boks
DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10−6). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability.
Nature Communications | 2017
Virginie Freytag; Tania Carrillo-Roa; Annette Milnik; Philipp G. Sämann; Vanja Vukojevic; David Coynel; Philippe Demougin; Tobias Egli; Leo Gschwind; Frank Jessen; Eva Loos; Wolfgang Maier; Steffi G. Riedel-Heller; Martin Scherer; Christian Vogler; Michael Wagner; Elisabeth B. Binder; Dominique J.-F. de Quervain; Andreas Papassotiropoulos
Increasing age is tightly linked to decreased thickness of the human neocortex. The biological mechanisms that mediate this effect are hitherto unknown. The DNA methylome, as part of the epigenome, contributes significantly to age-related phenotypic changes. Here, we identify an epigenetic signature that is associated with cortical thickness (P=3.86 × 10−8) and memory performance in 533 healthy young adults. The epigenetic effect on cortical thickness was replicated in a sample comprising 596 participants with major depressive disorder and healthy controls. The epigenetic signature mediates partially the effect of age on cortical thickness (P<0.001). A multilocus genetic score reflecting genetic variability of this signature is associated with memory performance (P=0.0003) in 3,346 young and elderly healthy adults. The genomic location of the contributing methylation sites points to the involvement of specific immune system genes. The decomposition of blood methylome-wide patterns bears considerable potential for the study of brain-related traits.
NeuroImage | 2016
Christopher D. Whelan; Derrek P. Hibar; Laura S. van Velzen; Anthony S. Zannas; Tania Carrillo-Roa; Katie L. McMahon; Gautam Prasad; Sinead Kelly; Joshua Faskowitz; Greig deZubiracay; Juan Eugenio Iglesias; Theo G.M. van Erp; Thomas Frodl; Nicholas G. Martin; Margaret J. Wright; Neda Jahanshad; Lianne Schmaal; Philipp G. Sämann; Paul M. Thompson
The human hippocampal formation can be divided into a set of cytoarchitecturally and functionally distinct subregions, involved in different aspects of memory formation. Neuroanatomical disruptions within these subregions are associated with several debilitating brain disorders including Alzheimer’s disease, major depression, schizophrenia, and bipolar disorder. Multi-center brain imaging consortia, such as the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium, are interested in studying disease effects on these subregions, and in the genetic factors that affect them. For large-scale studies, automated extraction and subsequent genomic association studies of these hippocampal subregion measures may provide additional insight. Here, we evaluated the test–retest reliability and transplatform reliability (1.5 T versus 3 T) of the subregion segmentation module in the FreeSurfer software package using three independent cohorts of healthy adults, one young (Queensland Twins Imaging Study, N = 39), another elderly (Alzheimer’s Disease Neuroimaging Initiative, ADNI-2, N = 163) and another mixed cohort of healthy and depressed participants (Max Planck Institute, MPIP, N = 598). We also investigated agreement between the most recent version of this algorithm (v6.0) and an older version (v5.3), again using the ADNI-2 and MPIP cohorts in addition to a sample from the Netherlands Study for Depression and Anxiety (NESDA) (N = 221). Finally, we estimated the heritability (h2) of the segmented subregion volumes using the full sample of young, healthy QTIM twins (N = 728). Test–retest reliability was high for all twelve subregions in the 3 T ADNI-2 sample (intraclass correlation coefficient (ICC) = 0.70–0.97) and moderate-to-high in the 4 T QTIM sample (ICC = 0.5–0.89). Transplatform reliability was strong for eleven of the twelve subregions (ICC = 0.66–0.96); however, the hippocampal fissure was not consistently reconstructed across 1.5 T and 3 T field strengths (ICC = 0.47–0.57). Between-version agreement was moderate for the hippocampal tail, subiculum and presubiculum (ICC = 0.78–0.84; Dice Similarity Coefficient (DSC) = 0.55–0.70), and poor for all other subregions (ICC = 0.34–0.81; DSC = 0.28–0.51). All hippocampal subregion volumes were highly heritable (h2 = 0.67–0.91). Our findings indicate that eleven of the twelve human hippocampal subregions segmented using FreeSurfer version 6.0 may serve as reliable and informative quantitative phenotypes for future multi-site imaging genetics initiatives such as those of the ENIGMA consortium.
Science Signaling | 2015
Nils C. Gassen; Gabriel Rodrigo Fries; Anthony S. Zannas; Jakob Hartmann; Jürgen Zschocke; Kathrin Hafner; Tania Carrillo-Roa; Jessica Steinbacher; S. Nicole Preißinger; Lianne Hoeijmakers; M. Knop; Frank Weber; Stefan Kloiber; Susanne Lucae; George P. Chrousos; Thomas Carell; Marcus Ising; Elisabeth B. Binder; Mathias V. Schmidt; Joëlle Rüegg; Theo Rein
Chaperone switching at the kinase CDK5 mediates epigenetic effects of antidepressants. Antidepressants chaperone DNA methylation Epigenetic changes are associated with depression. Some depressed patients have increased DNA methylation and decreased expression of the gene encoding BDNF, a secreted factor important for synaptic plasticity. Rein et al. found that some antidepressants inhibit epigenetic changes by causing a switch in chaperone binding to the DNA methyltransferase DNMT1. The chaperones FKBP51 and FKBP52 competed for binding to CDK5, a kinase that activates DNMT1. The authors found that cells from depressed patients or cultured mouse astrocytes exposed to the antidepressant paroxetine favored the FKBP51-CDK5 interaction, resulting in reduced activity of DNMT1 and DNA methylation, and increased the expression of BDNF. These effects of paroxetine on patient blood cells isolated before therapy correlated with a positive clinical response to antidepressants, suggesting that a simple blood test may aid in personalizing treatment for depression. Epigenetic processes, such as DNA methylation, and molecular chaperones, including FK506-binding protein 51 (FKBP51), are independently implicated in stress-related mental disorders and antidepressant drug action. FKBP51 associates with cyclin-dependent kinase 5 (CDK5), which is one of several kinases that phosphorylates and activates DNA methyltransferase 1 (DNMT1). We searched for a functional link between FKBP51 (encoded by FKBP5) and DNMT1 in cells from mice and humans, including those from depressed patients, and found that FKBP51 competed with its close homolog FKBP52 for association with CDK5. In human embryonic kidney (HEK) 293 cells, expression of FKBP51 displaced FKBP52 from CDK5, decreased the interaction of CDK5 with DNMT1, reduced the phosphorylation and enzymatic activity of DNMT1, and diminished global DNA methylation. In mouse embryonic fibroblasts and primary mouse astrocytes, FKBP51 mediated several effects of paroxetine, namely, decreased the protein-protein interactions of DNMT1 with CDK5 and FKBP52, reduced phosphorylation of DNMT1, and decreased the methylation and increased the expression of the gene encoding brain-derived neurotrophic factor (Bdnf). In human peripheral blood cells, FKBP5 expression inversely correlated with both global and BDNF methylation. Peripheral blood cells isolated from depressed patients that were then treated ex vivo with paroxetine revealed that the abundance of BDNF positively correlated and phosphorylated DNMT1 inversely correlated with that of FKBP51 in cells and with clinical treatment success in patients, supporting the relevance of this FKBP51-directed pathway that prevents epigenetic suppression of gene expression.
Science Advances | 2016
Till F.M. Andlauer; Dorothea Buck; G. Antony; Antonios Bayas; Lukas Bechmann; Achim Berthele; Andrew T. Chan; Christiane Gasperi; Ralf Gold; Christiane Graetz; Jürgen Haas; Michael Hecker; Carmen Infante-Duarte; M. Knop; Tania Kümpfel; V. Limmroth; Ralf A. Linker; Verena Loleit; Sven G. Meuth; Mark Mühlau; S. Nischwitz; Friedemann Paul; Michael Pütz; Tobias Ruck; Anke Salmen; Martin Stangel; Jan-Patrick Stellmann; Klarissa Hanja Stürner; Björn Tackenberg; Florian Then Bergh
Genome-wide study in Germans identifies four novel multiple sclerosis risk genes and confirms already known gene loci. We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.
Neuropsychopharmacology | 2015
Marin M. Jukic; Tania Carrillo-Roa; Michal Bar; Gal Becker; Vukasin M. Jovanovic; Ksenija Zega; Elisabeth B. Binder; Claude Brodski
Subtle mood fluctuations are normal emotional experiences, whereas drastic mood swings can be a manifestation of bipolar disorder (BPD). Despite their importance for normal and pathological behavior, the mechanisms underlying endogenous mood instability are largely unknown. During embryogenesis, the transcription factor Otx2 orchestrates the genetic networks directing the specification of dopaminergic (DA) and serotonergic (5-HT) neurons. Here we behaviorally phenotyped mouse mutants overexpressing Otx2 in the hindbrain, resulting in an increased number of DA neurons and a decreased number of 5-HT neurons in both developing and mature animals. Over the course of 1 month, control animals exhibited stable locomotor activity in their home cages, whereas mutants showed extended periods of elevated or decreased activity relative to their individual average. Additional behavioral paradigms, testing for manic- and depressive-like behavior, demonstrated that mutants showed an increase in intra-individual fluctuations in locomotor activity, habituation, risk-taking behavioral parameters, social interaction, and hedonic-like behavior. Olanzapine, lithium, and carbamazepine ameliorated the behavioral alterations of the mutants, as did the mixed serotonin receptor agonist quipazine and the specific 5-HT2C receptor agonist CP-809101. Testing the relevance of the genetic networks specifying monoaminergic neurons for BPD in humans, we applied an interval-based enrichment analysis tool for genome-wide association studies. We observed that the genes specifying DA and 5-HT neurons exhibit a significant level of aggregated association with BPD but not with schizophrenia or major depressive disorder. The results of our translational study suggest that aberrant development of monoaminergic neurons leads to mood fluctuations and may be associated with BPD.
Molecular Psychiatry | 2017
M M Jukić; Nils Opel; J Ström; Tania Carrillo-Roa; S Miksys; M Novalen; A Renblom; S C Sim; E M Peñas-Lledó; Philippe Courtet; A Llerena; Bernhard T. Baune; Dominique J.-F. de Quervain; Andreas Papassotiropoulos; R F Tyndale; Elisabeth B. Binder; Udo Dannlowski; Magnus Ingelman-Sundberg
The polymorphic CYP2C19 enzyme metabolizes psychoactive compounds and is expressed in the adult liver and fetal brain. Previously, we demonstrated that the absence of CYP2C19 is associated with lower levels of depressive symptoms in 1472 Swedes. Conversely, transgenic mice carrying the human CYP2C19 gene (2C19TG) have shown an anxious phenotype and decrease in hippocampal volume and adult neurogenesis. The aims of this study were to: (1) examine whether the 2C19TG findings could be translated to humans, (2) evaluate the usefulness of the 2C19TG strain as a tool for preclinical screening of new antidepressants and (3) provide an insight into the molecular underpinnings of the 2C19TG phenotype. In humans, we found that the absence of CYP2C19 was associated with a bilateral hippocampal volume increase in two independent healthy cohorts (N=386 and 1032) and a lower prevalence of major depressive disorder and depression severity in African-Americans (N=3848). Moreover, genetically determined high CYP2C19 enzymatic capacity was associated with higher suicidality in depressed suicide attempters (N=209). 2C19TG mice showed high stress sensitivity, impaired hippocampal Bdnf homeostasis in stress, and more despair-like behavior in the forced swim test (FST). After the treatment with citalopram and 5-HT1A receptor agonist 8OH-DPAT, the reduction in immobility time in the FST was more pronounced in 2C19TG mice compared with WTs. Conversely, in the 2C19TG hippocampus, metabolic turnover of serotonin was reduced, whereas ERK1/2 and GSK3β phosphorylation was increased. Altogether, this study indicates that elevated CYP2C19 expression is associated with depressive symptoms, reduced hippocampal volume and impairment of hippocampal serotonin and BDNF homeostasis.
Acta Psychiatrica Scandinavica | 2017
Divya Mehta; Dagmar Bruenig; Tania Carrillo-Roa; Bruce R. Lawford; Wendy Harvey; Charles P. Morris; Alicia K. Smith; Elizabeth B. Binder; R. McD Young; Joanne Voisey
Epigenetic modifications such as DNA methylation may play a key role in the aetiology and serve as biomarkers for post‐traumatic stress disorder (PTSD). We performed a genomewide analysis to identify genes whose DNA methylation levels are associated with PTSD.
PLOS Biology | 2017
Tania Carrillo-Roa; Christiana Labermaier; Peter Weber; David P. Herzog; Caleb Lareau; Sara Santarelli; Klaus V. Wagner; Monika Rex-Haffner; Daniela Harbich; Sebastian H. Scharf; Charles B. Nemeroff; Boadie W. Dunlop; W. Edward Craighead; Helen S. Mayberg; Mathias V. Schmidt; Manfred Uhr; Florian Holsboer; Inge Sillaber; Elisabeth B. Binder; Marianne B. Müller
Response to antidepressant treatment in major depressive disorder (MDD) cannot be predicted currently, leading to uncertainty in medication selection, increasing costs, and prolonged suffering for many patients. Despite tremendous efforts in identifying response-associated genes in large genome-wide association studies, the results have been fairly modest, underlining the need to establish conceptually novel strategies. For the identification of transcriptome signatures that can distinguish between treatment responders and nonresponders, we herein submit a novel animal experimental approach focusing on extreme phenotypes. We utilized the large variance in response to antidepressant treatment occurring in DBA/2J mice, enabling sample stratification into subpopulations of good and poor treatment responders to delineate response-associated signature transcript profiles in peripheral blood samples. As a proof of concept, we translated our murine data to the transcriptome data of a clinically relevant human cohort. A cluster of 259 differentially regulated genes was identified when peripheral transcriptome profiles of good and poor treatment responders were compared in the murine model. Differences in expression profiles from baseline to week 12 of the human orthologues selected on the basis of the murine transcript signature allowed prediction of response status with an accuracy of 76% in the patient population. Finally, we show that glucocorticoid receptor (GR)-regulated genes are significantly enriched in this cluster of antidepressant-response genes. Our findings point to the involvement of GR sensitivity as a potential key mechanism shaping response to antidepressant treatment and support the hypothesis that antidepressants could stimulate resilience-promoting molecular mechanisms. Our data highlight the suitability of an appropriate animal experimental approach for the discovery of treatment response-associated pathways across species.