Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tania Konry is active.

Publication


Featured researches published by Tania Konry.


Journal of the American Chemical Society | 2009

Intelligent Medical Diagnostics via Molecular Logic

Tania Konry; David R. Walt

In this communication, we describe the integration of microarray sensor technology with logic capability for screening combinations of proteins and DNA in a biological sample. In this system, we have demonstrated the use of a single platform amenable to both protein detection and protein-DNA detection using molecular logic gates. The pattern of protein and DNA inputs results in fluorescence outputs according to a truth table for AND and INHIBIT gates, thereby demonstrating the feasibility of performing medical diagnostics using a logic gate design. One possible application of this technique would be direct screening of various medical conditions that are dependent on combinations of diagnostic markers.


Biosensors and Bioelectronics | 2011

Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine

Tania Konry; Margarita Dominguez-Villar; Clare Baecher-Allan; David A. Hafler; Martin L. Yarmush

Here we present a microfluidic method for the analysis of single cell secretions. The method co-encapsulates cells with microspheres conjugated with capture antibodies and detection fluorescence-labeled antibodies. The secreted substance captured on the microsphere surface and detected via detection antibodies generating a localized fluorescent signal on a microsphere surface. Using this method, CD4+CD25+ regulatory T cells were encapsulated and assayed to detect IL-10 secreting cell in population.


Analytical Chemistry | 2009

Microsphere-Based Rolling Circle Amplification Microarray for the Detection of DNA and Proteins in a Single Assay

Tania Konry; Ryan B. Hayman; David R. Walt

We describe a high-density microarray for simultaneous detection of proteins and DNA in a single test. In this system, Rolling Circle Amplification (RCA) was used as a signal amplification method for both protein and nucleic acid detection. The microsphere sensors were tested with synthetic DNA and purified recombinant protein analytes. The target DNA sequence was designed from a highly conserved gene that encodes the outer membrane protein P6 (OMP-P6) of both typeable and nontypeable strains of Haemophilus influenzae. The proinflammatory mediators IL-6 and IL-8 were selected as target proteins. Capture antibodies were first immobilized on fluorescently encoded microspheres. The microspheres were then loaded into the etched microwells of an imaging optical fiber bundle. A sandwich assay was performed for target proteins IL-6 and IL-8 using biotin-labeled secondary antibodies. Biotinylated capture DNA probes were then attached to the detection antibodies via an avidin bridge. A padlock probe, complementary to the target sequence, was subsequently hybridized to the capture probe. In the presence of the target sequence, the padlock probe was ligated, and this circular sequence was used for RCA. Following RCA, multiple fluorescently labeled signal probes were hybridized to each amplified sequence, and the microarray was imaged using an epi-fluorescence microscope. With this assay, detection limits down to 10 fM and 1 pM were achieved for proteins and target DNA, respectively. In addition to this new approach for detecting both protein and DNA in a single test using RCA, the limit of detection for IL-8 and IL-6 was improved by 3 orders of magnitude compared to similar microsphere-based assays.


Small | 2011

Ultrasensitive detection of low-abundance surface-marker protein using isothermal rolling circle amplification in a microfluidic nanoliter platform.

Tania Konry; Irina V. Smolina; Joel Yarmush; Daniel Irimia; Martin L. Yarmush

With advances in immunology and cancer biology, there is an unmet need for increasingly sensitive systems to monitor the expression of specific cell markers for the development of new diagnostic and therapeutic tools. To address this challenge, a highly sensitive labeling method that translates antigen-antibody recognition processes into DNA detection events that can be greatly amplified via isothermal rolling circle amplification (RCA) is applied. By merging the single-molecule detection power of RCA reactions with microfluidic technology, it is demonstrated that the identification of specific protein markers can be achieved on tumor-cell surfaces in miniaturized nanoliter reaction droplets. Furthermore, this combined approach of signal amplification in a microfluidic format could extend the utility of existing methods by reducing sample and reagent consumption and enhancing the sensitivities and specificities for various applications, including early diagnosis of cancer.


Scientific Reports | 2013

Live single cell functional phenotyping in droplet nano-liter reactors

Tania Konry; Alexander Golberg; Martin L. Yarmush

While single cell heterogeneity is present in all biological systems, most studies cannot address it due to technical limitations. Here we describe a nano-liter droplet microfluidic-based approach for stimulation and monitoring of surfaceand secreted markers of live single immune dendritic cells (DCs) as well as monitoring the live T cell/DC interaction. This nano-liter in vivo simulating microenvironment allows delivering various stimuli reagents to each cell and appropriate gas exchanges which are necessary to ensure functionality and viability of encapsulated cells. Labeling bioassay and microsphere sensors were integrated into nano-liter reaction volume of the droplet to monitor live single cell surface markers and secretion analysis in the time-dependent fashion. Thus live cell stimulation, secretion and surface monitoring can be obtained simultaneously in distinct microenvironment, which previously was possible using complicated and multi-step in vitro and in vivo live-cell microscopy, together with immunological studies of the outcome secretion of cellular function.


Sensors and Actuators B-chemical | 2007

Development of a highly sensitive, field operable biosensor for serological studies of Ebola virus in central Africa

A. Petrosova; Tania Konry; Serge Cosnier; I. Trakht; J. Lutwama; E. Rwaguma; A. Chepurnov; E. Mühlberger; Leslie Lobel; Robert S. Marks

Abstract We describe herein a newly developed optical immunosensor for detection of antibodies directed against antigens of the Ebola virus strains Zaire and Sudan. We employed a photo immobilization methodology based on a photoactivatable electrogenerated poly(pyrrole-benzophenone) film deposited upon an indium tin oxide (ITO) modified conductive surface fiber-optic. It was then linked to a biological receptor, Ebola virus antigen in this case, on the fiber tip through a light driven reaction. The photochemically modified optical fibers were tested as an immunosensor for detection of antibodies against Ebola virus, in animal and human sera, by use of a coupled chemiluminescent reaction. The immunosensor was tested for sensitivity, specificity, and compared to standard chemiluminescent ELISA under the same conditions. The analyte, anti-Ebola IgG, was detected at a low titer of 1:960,000 and 1:1,000,000 for subtypes Zaire and Sudan, respectively. While the same serum tested by ELISA was one order (24 times) less sensitive.


Biosensors and Bioelectronics | 2015

Approaching near real-time biosensing: Microfluidic microsphere based biosensor for real-time analyte detection

Noa Cohen; Pooja Sabhachandani; Alexander Golberg; Tania Konry

In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays.


PLOS ONE | 2014

Cloud-Enabled Microscopy and Droplet Microfluidic Platform for Specific Detection of Escherichia coli in Water

Alexander Golberg; Gregory Linshiz; Ilia Kravets; Nina Stawski; Nathan J. Hillson; Martin L. Yarmush; Robert S. Marks; Tania Konry

We report an all-in-one platform – ScanDrop – for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a “cloud” network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2–4 days for other currently available standard detection methods.


Mikrochimica Acta | 2012

Particles and microfluidics merged: perspectives of highly sensitive diagnostic detection

Tania Konry; Shyam Sundhar Bale; Abhinav Bhushan; Keyue Shen; Erkin Seker; Boris Polyak; Martin L. Yarmush

AbstractThere is a growing need for diagnostic technologies that provide laboratories with solutions that improve quality, enhance laboratory system productivity, and provide accurate detection of a broad range of infectious diseases and cancers. Recent advances in micro- and nanoscience and engineering, in particular in the areas of particles and microfluidic technologies, have advanced the “lab-on-a-chip” concept towards the development of a new generation of point-of-care diagnostic devices that could significantly enhance test sensitivity and speed. In this review, we will discuss many of the recent advances in microfluidics and particle technologies with an eye towards merging these two technologies for application in medical diagnostics. Although the potential diagnostic applications are virtually unlimited, the most important applications are foreseen in the areas of biomarker research, cancer diagnosis, and detection of infectious microorganisms. FigureThere is a growing need for diagnostic technologies that provide laboratories with solutions that improve quality, enhance laboratory system productivity, and provide accurate detection of a broad range of infectious diseases and cancers. In this review, we will discuss many of the recent advances in microfluidics and particle technologies with an eye towards merging these two technologies for application in medical diagnostics such as microfluidic device to monitor molecular secretions in real-time as demonstrated in this figure.


Talanta | 2008

ITO pattern fabrication of glass platforms for electropolymerization of light sensitive polymer for its conjugation to bioreceptors on a micro-array

Tania Konry; B. Hadad; † Y. Shemer-Avni; Serge Cosnier; Robert S. Marks

We present herein an effective and versatile method to fabricate a micro-patterned structure of conductive polymer, poly(pyrrole-benzophenone), on Indium Tin Oxide (ITO) glass chips for the subsequent photo-immobilization of various bioreceptor, antigens. Such methodologies are based on photolithography of ITO pattern fabrication on non-conductive surfaces, glass slides, and on a photo-active electrogenerated polymer films. The photo-active polymer serves as a substrate platform for the photo-immobilization of the bioreceptor reagents used for subsequent immunoreactions. We were able to show the resolution of electropolymerization on an ITO pattern as well as immobilization of more than one bioreceptor for the simultaneous detection of several analytes. The antigen micro-arrays were tested for sensitivity, specificity, and overall practicality for the simultaneous detection of analyte anti-Cholera Toxin B, anti-Hepatitis B virus surface and core protein antibodies. In addition we used our pattern ITO-poly(pyrrole-benzophenone) micro-array for the detection of serum samples of Hepatitis B virus patients previously screened by a standard hospital detection method.

Collaboration


Dive into the Tania Konry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noa Cohen

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert S. Marks

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Serge Cosnier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge