Tania López-Hernández
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tania López-Hernández.
American Journal of Human Genetics | 2011
Tania López-Hernández; Margreet C. Ridder; Marisol Montolio; Xavier Capdevila-Nortes; Emiel Polder; Sònia Sirisi; Anna Duarri; Uwe Schulte; Bernd Fakler; Virginia Nunes; Gert C. Scheper; Albert Martínez; Raúl Estévez; Marjo S. van der Knaap
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by early-onset macrocephaly and delayed-onset neurological deterioration. Recessive MLC1 mutations are observed in 75% of patients with MLC. Genetic-linkage studies failed to identify another gene. We recently showed that some patients without MLC1 mutations display the classical phenotype; others improve or become normal but retain macrocephaly. To find another MLC-related gene, we used quantitative proteomic analysis of affinity-purified MLC1 as an alternative approach and found that GlialCAM, an IgG-like cell adhesion molecule that is also called HepaCAM and is encoded by HEPACAM, is a direct MLC1-binding partner. Analysis of 40 MLC patients without MLC1 mutations revealed multiple different HEPACAM mutations. Ten patients with the classical, deteriorating phenotype had two mutations, and 18 patients with the improving phenotype had one mutation. Most parents with a single mutation had macrocephaly, indicating dominant inheritance. In some families with dominant HEPACAM mutations, the clinical picture and magnetic resonance imaging normalized, indicating that HEPACAM mutations can cause benign familial macrocephaly. In other families with dominant HEPACAM mutations, patients had macrocephaly and mental retardation with or without autism. Further experiments demonstrated that GlialCAM and MLC1 both localize in axons and colocalize in junctions between astrocytes. GlialCAM is additionally located in myelin. Mutant GlialCAM disrupts the localization of MLC1-GlialCAM complexes in astrocytic junctions in a manner reflecting the mode of inheritance. In conclusion, GlialCAM is required for proper localization of MLC1. HEPACAM is the second gene found to be mutated in MLC. Dominant HEPACAM mutations can cause either macrocephaly and mental retardation with or without autism or benign familial macrocephaly.
Neuron | 2012
Elena Jeworutzki; Tania López-Hernández; Xavier Capdevila-Nortes; Sònia Sirisi; Luiza Bengtsson; Marisol Montolio; Giovanni Zifarelli; Tanit Arnedo; Catrin S. Müller; Uwe Schulte; Virginia Nunes; Albert Martínez; Thomas J. Jentsch; Xavier Gasull; Michael Pusch; Raúl Estévez
Summary Ion fluxes mediated by glial cells are required for several physiological processes such as fluid homeostasis or the maintenance of low extracellular potassium during high neuronal activity. In mice, the disruption of the Cl− channel ClC-2 causes fluid accumulation leading to myelin vacuolation. A similar vacuolation phenotype is detected in humans affected with megalencephalic leukoencephalopathy with subcortical cysts (MLC), a leukodystrophy which is caused by mutations in MLC1 or GLIALCAM. We here identify GlialCAM as a ClC-2 binding partner. GlialCAM and ClC-2 colocalize in Bergmann glia, in astrocyte-astrocyte junctions at astrocytic endfeet around blood vessels, and in myelinated fiber tracts. GlialCAM targets ClC-2 to cell junctions, increases ClC-2 mediated currents, and changes its functional properties. Disease-causing GLIALCAM mutations abolish the targeting of the channel to cell junctions. This work describes the first auxiliary subunit of ClC-2 and suggests that ClC-2 may play a role in the pathology of MLC disease. Video Abstract
Human Molecular Genetics | 2011
Tania López-Hernández; Sònia Sirisi; Xavier Capdevila-Nortes; Marisol Montolio; Víctor Fernández-Dueñas; Gert C. Scheper; Marjo S. van der Knaap; Pilar Casquero; Francisco Ciruela; Isidre Ferrer; Virginia Nunes; Raúl Estévez
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in MLC1 or GLIALCAM. The GLIALCAM gene product functions as an MLC1 beta-subunit. We aim to further clarify the molecular mechanisms of MLC caused by mutations in MLC1 or GLIALCAM. For this purpose, we analyzed a human post-mortem brain obtained from an MLC patient, who was homozygous for a missense mutation (S69L) in MLC1. We showed that this mutation affects the stability of MLC1 in vitro and reduces MLC1 protein levels in the brain to almost undetectable. However, the amount of GlialCAM and its localization were nearly unaffected, indicating that MLC1 is not necessary for GlialCAM expression or targeting. These findings were supported by experiments in primary astrocytes and in heterologous cells. In addition, we demonstrated that MLC1 and GlialCAM form homo- and hetero-complexes and that MLC-causing mutations in GLIALCAM mainly reduce the formation of GlialCAM homo-complexes, leading to a defect in the trafficking of GlialCAM alone to cell junctions. GLIALCAM mutations also affect the trafficking of its associated molecule MLC1, explaining why GLIALCAM and MLC1 mutations lead to the same disease: MLC.
Human Molecular Genetics | 2008
Anna Duarri; Oscar Teijido; Tania López-Hernández; Gert C. Scheper; Herve Barriere; Ilja Boor; Fernando Aguado; Antonio Zorzano; Manuel Palacín; Albert Martínez; Gergely L. Lukacs; Marjo S. van der Knaap; Virginia Nunes; Raúl Estévez
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, most often caused by mutations in the MLC1 gene. MLC1 is an oligomeric plasma membrane (PM) protein of unknown function expressed mainly in glial cells and neurons. Most disease-causing missense mutations dramatically reduced the total and PM MLC1 expression levels in Xenopus oocytes and mammalian cells. The impaired expression of the mutants was verified in primary cultures of rat astrocytes, as well as human monocytes, cell types that endogenously express MLC1, demonstrating the relevance of the tissue culture models. Using a combination of biochemical, pharmacological and imaging methods, we also demonstrated that increased endoplasmatic reticulum-associated degradation and endo-lysosomal-associated degradation can contribute to the cell surface expression defect of the mutants. Based on these results, we suggest that MLC1 mutations reduce protein levels in vivo. Since the expression defect of the mutants could be rescued by exposing the mutant-protein expressing cells to low temperature and glycerol, a chemical chaperone, we propose that MLC belongs to the class of conformational diseases. Therefore, we suggest the use of pharmacological strategies that improve MLC1 expression to treat MLC patients.
Neurobiology of Disease | 2011
Anna Duarri; Miguel López de Heredia; Xavier Capdevila-Nortes; Margreet C. Ridder; Marisol Montolio; Tania López-Hernández; Ilja Boor; Chun-Fu Lien; Tracy L. Hagemann; Albee Messing; Dariusz C. Górecki; Gert C. Scheper; Albert Martínez; Virginia Nunes; Marjo S. van der Knaap; Raúl Estévez
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, in the majority of cases caused by mutations in the MLC1 gene. MRI from MLC patients shows diffuse cerebral white matter signal abnormality and swelling, with evidence of increased water content. Histopathology in a MLC patient shows vacuolation of myelin, which causes the cerebral white matter swelling. MLC1 protein is expressed in astrocytic processes that are part of blood- and cerebrospinal fluid-brain barriers. We aimed to create an astrocyte cell model of MLC disease. The characterization of rat astrocyte cultures revealed MLC1 localization in cell-cell contacts, which contains other proteins described typically in tight and adherent junctions. MLC1 localization in these contacts was demonstrated to depend on the actin cytoskeleton; it was not altered when disrupting the microtubule or the GFAP networks. In human tissues, MLC1 and the protein Zonula Occludens 1 (ZO-1), which is linked to the actin cytoskeleton, co-localized by EM immunostaining and were specifically co-immunoprecipitated. To create an MLC cell model, knockdown of MLC1 in primary astrocytes was performed. Reduction of MLC1 expression resulted in the appearance of intracellular vacuoles. This vacuolation was reversed by the co-expression of human MLC1. Re-examination of a human brain biopsy from an MLC patient revealed that vacuoles were also consistently present in astrocytic processes. Thus, vacuolation of astrocytes is also a hallmark of MLC disease.
Human Molecular Genetics | 2013
Xavier Capdevila-Nortes; Tania López-Hernández; Pirjo M. Apaja; Miguel López de Heredia; Sònia Sirisi; Gerard Callejo; Tanit Arnedo; Virginia Nunes; Gergely L. Lukacs; Xavier Gasull; Raúl Estévez
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy caused by mutations in either MLC1 or GLIALCAM genes and is associated with myelin and astrocyte vacuolation. It has been suggested that MLC is caused by impaired cell volume regulation as a result of defective activation of astrocytic volume-regulated anion currents (VRAC). GlialCAM brings MLC1 and the ClC-2 Cl(-) channel to cell-cell junctions, even though the role of ClC-2 in MLC disease remains incompletely understood. To gain insights into the biological role of GlialCAM in the pathogenesis of MLC disease, here we analyzed the gain- and loss-of-function phenotypes of GlialCAM in Hela cells and primary astrocytes, focusing on its interaction with the MLC1 protein. Unexpectedly, GlialCAM ablation provoked intracellular accumulation and reduced expression of MLC1 at the plasma membrane. Conversely, over-expression of GlialCAM increased the cellular stability of mutant MLC1 variants. Reduction in GlialCAM expression resulted in defective activation of VRAC and augmented vacuolation, phenocopying MLC1 mutations. Importantly, over-expression of GlialCAM together with MLC1 containing MLC-related mutations was able to reactivate VRAC currents and to reverse the vacuolation caused in the presence of mutant MLC1. These results indicate a previously unrecognized role of GlialCAM in facilitating the biosynthetic maturation and cell surface expression of MLC1, and suggest that pharmacological strategies aimed to increase surface expression of MLC1 and/or VRAC activity may be beneficial for MLC patients.
Biophysical Journal | 2014
Elena Jeworutzki; Laura Lagostena; Xabier Elorza-Vidal; Tania López-Hernández; Raúl Estévez; Michael Pusch
GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction.
Human Molecular Genetics | 2014
Sònia Sirisi; Mónica Folgueira; Tania López-Hernández; Laura Minieri; Carla Pérez-Rius; Héctor Gaitán-Peñas; Jingjing Zang; Albert Martínez; Xavier Capdevila-Nortes; Pedro de la Villa; Upasana Roy; A. Alia; Stephan C. F. Neuhauss; Stefano Ferroni; Virginia Nunes; Raúl Estévez; Alejandro Barrallo-Gimeno
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by myelin vacuolization and caused by mutations in MLC1 or GLIALCAM. Patients with recessive mutations in either MLC1 or GLIALCAM show the same clinical phenotype. It has been shown that GLIALCAM is necessary for the correct targeting of MLC1 to the membrane at cell junctions, but its own localization was independent of MLC1 in vitro. However, recent studies in Mlc1(-/-) mice have shown that GlialCAM is mislocalized in glial cells. In order to investigate whether the relationship between Mlc1 and GlialCAM is species-specific, we first identified MLC-related genes in zebrafish and generated an mlc1(-/-) zebrafish. We have characterized mlc1(-/-) zebrafish both functionally and histologically and compared the phenotype with that of the Mlc1(-/-) mice. In mlc1(-/-) zebrafish, as in Mlc1(-/-) mice, Glialcam is mislocalized. Re-examination of a brain biopsy from an MLC patient indicates that GLIALCAM is also mislocalized in Bergmann glia in the cerebellum. In vitro, impaired localization of GlialCAM was observed in astrocyte cultures from Mlc1(-/-) mouse only in the presence of elevated potassium levels, which mimics neuronal activity. In summary, here we demonstrate an evolutionary conserved role for MLC1 in regulating glial surface levels of GLIALCAM, and this interrelationship explains why patients with mutations in either gene (MLC1 or GLIALCAM) share the same clinical phenotype.
Human Mutation | 2014
Tanit Arnedo; Tania López-Hernández; Elena Jeworutzki; Xavier Capdevila-Nortes; Sònia Sirisi; Michael Pusch; Raúl Estévez
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy characterized by white matter edema. Autosomal‐recessive mutations in MLC1 cause MLC type 1, and autosomal‐recessive or dominant mutations in HEPACAM (also called GLIALCAM) cause MLC type 2A and type 2B, respectively. The role of MLC1 and HEPACAM is unknown, although they have been related with the processes of cell–volume regulation and potassium siphoning by astrocytes. Previous studies with some of the mutations identified in HEPACAM showed that most of them are associated with a trafficking defect. Here, we analyzed biochemically and functionally most mutations identified up‐to‐date in HEPACAM. Our results allow classifying the effect of mutations in different subtypes and we indicate different cellular mechanisms that lead to MLC pathogenesis.
Human Molecular Genetics | 2017
Sònia Sirisi; Xabier Elorza-Vidal; Tanit Arnedo; Mercedes Armand-Ugón; Gerard Callejo; Xavier Capdevila-Nortes; Tania López-Hernández; Uwe Schulte; Alejandro Barrallo-Gimeno; Virginia Nunes; Xavier Gasull; Raúl Estévez
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy caused by mutations in either MLC1 or GLIALCAM. GlialCAM is necessary for the correct targeting of MLC1, but also for the targeting of the Cl- channel ClC-2. Furthermore, GlialCAM modifies ClC-2 functional properties in vitro. However, in vivo studies in GlialCAM-/- mice have shown that the modification of ClC-2 activity only occurs in oligodendrocytes, despite GlialCAM and ClC-2 being expressed in astrocytes. Thus, the relationship between GlialCAM, MLC1 and ClC-2 in astrocytes is unknown. Here, we show that GlialCAM, ClC-2 and MLC1 can form a ternary complex in cultured astrocytes, but only under depolarizing conditions. We also provide biochemical evidences that this ternary complex exists in vivo. The formation of this complex changes ClC-2 localization in the membrane and its functional properties. ClC-2 association with GlialCAM/MLC1 depends on calcium flux through L-type calcium channels and activation of calcium-dependent calpain proteases. Based on these studies, we propose that the chloride influx mediated by GlialCAM/MLC1/ClC-2 in astrocytes may be needed to compensate an excess of potassium, as occurs in conditions of high neuronal activity. We suggest that a defect in this compensation may contribute to the pathogenesis of MLC disease.